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We compare theoretical results for electron spin resonance (ESR) properties of the Heisenberg-Ising
Hamiltonian with ESR experiments on the quasi-one-dimensional magnet Cu(py)2Br2 (CPB). Our
measurements were performed over a wide frequency and temperature range giving insight into spin
dynamics, spin structure, and magnetic anisotropy of this compound. By analyzing the angular
dependence of ESR parameters (resonance shift and linewidth) at room temperature we show that
the two weakly coupled inequivalent spin chain types inside the compound are well described by
Heisenberg-Ising chains with their magnetic anisotropy axes perpendicular to the chain direction
and almost perpendicular to each other. We further determine the full g-tensor from these data.
In addition, the angular dependence of the linewidth at high temperatures gives us access to the
exponent of the algebraic decay of a dynamical correlation function of the isotropic Heisenberg chain.
From the temperature dependence of static susceptibilities we extract the strength of the exchange
coupling (J/kB = 52.0 K) and the anisotropy parameter (δ ≈ −0.02) of the model Hamiltonian. An
independent compatible value of δ is obtained by comparing the exact prediction for the resonance
shift at low temperatures with high-frequency ESR data recorded at 4 K. The spin structure in
the ordered state implied by the two (almost) perpendicular anisotropy axes is in accordance with
the propagation vector determined from neutron scattering experiments. In addition to undoped
samples we study the impact of partial substitution of Br by Cl ions on spin dynamics. From the
dependence of the ESR linewidth on doping level we infer an effective decoupling of the anisotropic
component Jδ from the isotropic exchange J in these systems.

I. INTRODUCTION

Although known for decades, one dimensional (1d) elec-
tronic systems remain an active field of research in modern
solid-state physics. These systems possess their own spe-
cific phenomenology. At half band-filling even an infinites-
imal residual on-site repulsion drives them into a Mott-
insulating phase1 in which antiferromagnetic exchange is
the predominant interaction. For this reason a variety of
quasi-1d antiferromagnetic chain and ladder compounds
exists in nature. They are generally well described by the
Heisenberg spin chain with nearest-neighbor exchange or
by one of its many variations that can be obtained by
coupling several chains, by extending the range of the
exchange interaction, or by making it anisotropic. Depend-
ing on the specific choice of the exchange and anisotropy
parameters and on the strength of an applied magnetic
field, these models can have gapped or gapless excitations.
In any case there are a number of numerical and analytical
methods specific for one spatial dimension which allow for
the computation of more of the experimentally accessible
quantities than for the same models in higher dimensions.
These methods include the many variants of the numerical
DMRG method2–5 and exact diagonalization6,7 as well
as methods from conformal8–10 and relativistic integrable
massive quantum field theory11,12 in 1+1 dimensions.

The variety of theoretical methods applicable to 1d sys-
tems boosted the search for experimental realizations
of such systems with reduced (magnetic) dimensionality
starting in the seventies of the last century (see e.g. Ref. 13
and references therein). The aim of this search was, on
the one hand, to find experimental evidence for the above-
mentioned physics specific for 1d systems. On the other
hand, investigations of these materials could serve for a
validation (or falsification) of theoretical methods with
potential application to higher dimensional systems. The
organo-metallic compound Cu(py)2Cl2 (py denotes the
molecule pyridine NC5H5) was one of the first realizations
of a spin-1/2 Heisenberg chain and was intensively studied
some decades ago.14–16 Although discovered at the same
time, the closely related compound Cu(py)2Br2 (CPB)
received considerably less attention. Nevertheless, as
can be concluded from measurements of specific heat and
static magnetic susceptibility, CPB turned out to be closer
to an 1d material than its Cl containing counterpart.17

Based on these measurements, it was found that CPB
has an exchange interaction along the chain not too big
compared with magnetic fields that can be realized in a
laboratory, but big enough compared to the interchain
coupling.17 Thus, CPB is a promising candidate for a 1d
system suited for comparison of experimental data with
theoretical predictions.
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In this work, we present such a comprehensive com-
parison combining ESR as well as magnetization mea-
surements with calculations based on recently developed
techniques. The temperature dependence of the magneti-
zation enables us to determine the strength of the isotropic
intrachain exchange (J/kB = 52.0 K) and to estimate the
value of the magnetic anisotropy (δ ≈ −0.02). Results of
angular dependent measurements of the ESR linewidth
and resonance position at room temperature and at a
frequency of 9.56 GHz can be explained considering the
existence of two magnetically inequivalent chains in this
material as well as a small anisotropy δ. Furthermore,
based on these measurements we determine the g-tensor
of this compound and find evidence for the presence of two
anisotropy axes, related to the different types of chains.
A possible spin configuration of the ordered state, which
follows from this structure, is compatible with the propa-
gation vector (0, 0.5, 0.5) obtained from neutron scattering
investigations. From frequency dependent high-field/high-
frequency ESR (HF-ESR) measurements we derive the
temperature independent value of the g-factor along the
chain axis gc = 2.153. The experimentally determined
gc allows us to calculate the resonance shift of the ESR
line from HF-ESR data measured at 4 K. By comparing
the obtained resonance shifts with shifts calculated by
means of field theoretical and exact methods, we show
that exact finite temperature calculations (or at least log-
arithmic corrections to field theory) are required in order
to describe the low-temperature data. Finally, we discuss
ESR studies on samples with two different amounts of
partial substitution of Br by Cl ions. From the change of
the linewidth with doping concentration we conclude an
effective decoupling of anisotropic exchange from isotropic
exchange as function of doping.

The paper is organized as follows. In Sec. II we recall
part of the theoretical background for the exact calcula-
tion of the thermodynamics of the Heisenberg chain and
for the description of microwave absorption probed in
ESR experiments. Sec. III is devoted to details of the
samples, the methods and the equipment used in our ex-
periments. In Sec. IV we explain how the anisotropy can
be extracted from two magnetization measurements with
magnetic fields applied in two different directions. The
analysis of our ESR experiments is presented in Sec. V.
Sec. VI accounts for the results of neutron scattering ex-
periments on CPB. In Sec. VII we discuss the influence of
substituting a small amount of the Br by Cl ions. Finally,
in Secs. VIII and IX, we discuss our results and conclude
by summarizing the main statements of the paper and
by giving an outlook to possible future studies. In the
appendices we present two new theoretical methods used
in this work, one for analyzing magnetization data of
close-to-isotropic models (App. A), another one for an-
alyzing line shift and linewidth of the resonance lines
(ESR parameters) by means of (modified) moments of
the spectral function (App. B). In App. C we discuss the
spin structure of the ordered ground state of CPB using
a renormalization group argument.

II. THEORETICAL BACKGROUND

From the analysis of our thermodynamic and ESR
measurements we shall argue that the magnetic properties
of the compound CPB are well described by the spin-1/2
Heisenberg-Ising chain (or XXZ chain)

H = J
∑
〈ij〉

[
si · sj + δ szi s

z
j

]
(1)

with exchange interaction of strength J and anisotropy
parameter δ. More precisely, our experimental data can
be interpreted consistently, for temperatures down to 4 K,
assuming that the two inequivalent magnetic chains inside
the compound are described by two non-interacting XXZ
chains with the same values of J and δ but two different
orientations of the magnetic symmetry axes (called ‘the
anisotropy axes’ in the following). In doing so, we neglect
weak interchain couplings which lead to a 3d ordering
temperature of about TN = 0.72 K.17

The Hamiltonian (1) defines one of the most studied
and best understood 1d many-particle models. It be-
longs to the class of so-called integrable lattice models,18

meaning that, in addition to the generic 1d methods
mentioned in the previous section, several advanced math-
ematical techniques can be applied to calculate its ther-
modynamic properties19,20 and some of its thermal cor-
relation functions21,22 analytically. For the comparison
with our magnetization measurements we shall resort to
the so-called quantum transfer matrix approach to the
thermodynamics of integrable lattice models.23,24 This
approach allows us to calculate the magnetization and the
neighbor-correlation functions, that are needed to take
into account a small anisotropy, exactly and to arbitrary
precision for the Heisenberg model on an infinite chain.

The correlation function which determines the absorp-
tion of microwaves in ESR experiments within linear
response theory25 and which is therefore relevant for our
work is the imaginary part of the dynamical susceptibility,

χ′′+−(ω, h) =
1

2L

∫ ∞
−∞

dt eiωt
〈
[S+(t), S−]

〉
T,h,δ

. (2)

Here, L is the number of lattice sites in the spin chain, S+

and S− are ladder operators for the total spin, and the
brackets under the integral denote the thermal average
in the canonical ensemble at temperature T and for an
external magnetic field of strength H with corresponding
Zeeman energy h = gµBµ0H. The direction of the mag-
netic field is, in our convention, the z direction. For later
convenience, we include the parameter δ of Hamiltonian
(1) into the list of subscripts of the thermal average. In
App. B we discuss more general set-ups where, for in-
stance, the incident wave is linearly polarized rather than
circularly, as well as a slightly more general Hamiltonian
whose anisotropy axis is arbitrarily oriented.

The ESR line is determined by the absorbed intensity
I(ω, h) = ωχ′′(ω, h)/2. In spite of the integrability of
the XXZ chain an analytic calculation of this function at
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all temperatures and magnetic fields is still out of reach.
Numerical calculations based on the exact diagonalization
of finite chains26–28 are plagued by finite size effects, ren-
dering them unreliable for small temperatures and small
anisotropies. Small anisotropies cause narrow absorption
lines, meaning that a high numerical frequency resolution
is required or, alternatively, that we need to know the
corresponding time-dependent correlation functions in
the long-time limit. As far as we understand, this also
restricts the applicability of current finite-temperature dy-
namical DMRG methods. Field theoretical methods,29,30

on the other hand, are suitable for small anisotropies, but
are restricted to small temperatures and a limited range
of magnetic fields.

Instead of calculating the full dynamical susceptibil-
ity, one may try to find appropriate measures for certain
characteristic features of the spectral line, like the devia-
tion of its center from the position of the paramagnetic
resonance, the so-called resonance shift, or its linewidth
(for details see App. B). Such an approach was origi-
nally proposed by van Vleck31, who devised a ‘method of
moments’ even before the linear response theory was in-
vented. Van Vleck found formulae for the moments in the
high-temperature limit. Later, Maeda et al.32 related the
resonance shift of the XXZ chain with small anisotropy
to a certain nearest-neighbor static correlation function
which can be extracted from the free energy per lattice site
and can be computed exactly for arbitrary temperatures
and magnetic fields. In previous work27,28 part of the
authors developed a general method of moments for the
XXZ model in an external magnetic field directed along
the magnetic anisotropy axis. It relates all moments of
the normalized intensity I(ω, h)/I0 to static finite-range
correlation functions. In 1d the first few of them can be
exactly calculated for arbitrary temperature, magnetic
field, and anisotropy.22,33 They provide an idea about the
temperature and field dependence of the ESR parame-
ters. The question if this dependence can be observed
experimentally stood at the beginning of our work.

In the comparison of moment-based ESR parameters
with experimental data from standard ESR experiments,
two possible difficulties may arise. The first one relates
to the fact that the moments are calculated as integrals
over the frequency for fixed magnetic field, while ESR
experiments are usually performed for fixed frequency and
the field is varied. As we have pointed out in previous
work28 this may even cause a seemingly wrong prediction
for the qualitative behavior of the linewidth as a function
of temperature. Still, the discrepancy can be resolved, at
least in principle, by changing the experimental set-up
such that the frequency is varied at fixed external field.
In practice, however, such a frequency sweep measure-
ment with fixed magnetic field is rather challenging (see
e.g. Ref. 34 and references therein), in particular, when
dealing with broad resonance lines.

A second difficulty which may be encountered is that
the linewidth defined by the second moment of the ab-
sorbed intensity may take rather different values than

its width at half height, which is one of the standard
experimental measures of the linewidth. The reason is
that ‘long tails’ of the resonance line may considerably
contribute to the moment-based linewidth while they are
entirely ignored by a measure like the width at half height.
In the experimental ESR data such tails may be over-
laid by background noise which makes an extraction of
the moment-based width from the data problematic if
not impossible. In this work we try to overcome this
problem by introducing moments in which the absorbed
intensity is multiplied by a ‘weight function’ providing a
cut-off for the high-frequency tails (see App. B 1). For
small anisotropy and high temperatures a scaling anal-
ysis then makes it possible to relate the moment-based
width with the width at half height. This way we can
understand and interpret the angular dependence of our
high-temperature data for the linewidth of CPB. Our
interpretation supports the picture of ‘inhibited exchange
narrowing’ developed in Ref. 35.

III. SAMPLES AND EXPERIMENTAL
METHODS

Single crystals used in this study were grown from so-
lution and were investigated by means of measurements
of static susceptibility, specific heat and muon spin rota-
tion in Ref. 17. A crucial input for the discussion of our
ESR data below is the crystallographic structure of our
samples. CPB is monoclinic (P21/m) with a = 8.424 Å,
b = 17.599 Å, c = 4.0504 Å, and β = 97.12◦.36 The mag-
netic ions are Cu2+ ions (S = 1/2) which form chains
along the c axis (see Fig. 1). Each of these Cu ions is
surrounded by four Br ligands and two N ligands, the
latter belonging to the pyridine molecules which separate
neighboring chains from each other. The surrounding lig-
ands form a stretched octahedron whose stretching axis,
i.e. the longer Br-Cu-Br axis, is tilted away from the c
axis by an angle θc = 37.24◦, as shown in Fig. 2. The
angle between the projection of the stretching axis onto
the plane perpendicular to the c axis (called a′-b plane in
the following) and the a′ axis is ±φa′ with φa′ = 43.44◦

for the two inequivalent chains. The line connecting
the two opposite nitrogen ligands almost lies in the a′-b
plane, tilted away only by 0.3◦. It encloses an angle of
±(90◦ − φa′) = ±46.56◦ with the a′ axis. Single crystals
cleave along the c axis, which enables us to easily identify
this crystallographic direction.

There are two magnetically inequivalent types of chains
which differ in the orientation of the stretching axis of the
octahedra. They can be transformed into each other by
combining a reflection with respect to a plane normal to
the b axis lying in between the two chains and a translation
of c/2 in c direction (see Fig. 1). Therefore, the orientation
of the ionic g-tensors is different for these two chain types,
while the g-tensors for sites within one chain are identical.

Neighboring magnetic ions in the individual chains
are antiferromagnetically coupled by superexchange via
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FIG. 1. Structure of the compound Cu(py)2Br2. Cu ions
(yellow), located in the centers of stretched octahedra (Br
green, N dark blue), form chains along the c axis which are
separated from each other by pyridine rings NC5H5 (C light
blue, H gray). Crystallographic data are taken from Ref. 36.
The arrows indicate the proposed magnetic structure of CPB
below TN ' 0.72 K as discussed in Sec. VI and App. C.

the halogen ligands between them. The strength of this
intrachain exchange was obtained in Ref. 17 by comparing
the static susceptibility measured in a field along the chain
direction with the exact result for the isotropic Heisenberg
chain,37 given by Hamiltonian (1) with δ = 0. The authors
of Ref. 17 report an isotropic exchange of J = 4.58 meV.
Although neighboring chains are well separated from each
other, there exists a residual interchain exchange J ′ which
leads to 3d ordering at finite temperatures. This transition
was observed17 in specific heat measurements at TN =
0.72 K and can be used to estimate the strength of the
interchain exchange to be J ′ ≈ 0.03 meV (see e.g. Ref. 38).
From these values it follows that the magnetic interactions
in CPB have a strong one-dimensional character thus
qualifying this compound for comparison with theories
based on 1d models like Eq. (1).

We measured static magnetization of a CPB sample us-
ing a VSM-SQUID magnetometer from Quantum Design
Inc. in DC-mode in the temperature range from 1.8 K to
325 K, in order to reinvestigate the exchange coupling J
by taking the effect of a small anisotropy δ into account.

Beside the pure compound CPB, two doped samples
with 2% and 5% Cl content were studied. Their crystal
structure is similar to CPB with some of the Br sites
occupied by Cl ions, which leads to local changes of the
g-tensor and of the effective isotropic exchange.17 This
way disorder is introduced into the system.

For our ESR studies of these compounds two spectro-
meters were employed. Measurements with a microwave
frequency of 9.56 GHz at temperatures between 3.6 K and
300 K, and fields up to 0.9 T were performed using a stan-
dard Bruker EMX X-Band spectrometer. HF-ESR was
measured using a homemade spectrometer which is de-

FIG. 2. Left: Local coordinate system of a stretched octahe-
dron formed by four bromine ions (green) and two nitrogen
ions (dark blue), surrounding the central copper ion (yellow).
Principal axes g1, g2, and g3 of the g-tensor ĝ coincide with
the symmetry axes of the stretched octahedron. The angle be-
tween local magnetic field ĝH and anisotropy axis d is denoted
by ϑ. Right: Angles of ĝH (θ, φ), d (90◦, 90◦ − φa′), and g3
(θc,−φa′) with respect to the crystallographic frame (a′,b, c).
Additionally, the angle ϑ between ĝH and d is shown.

scribed in detail elsewhere.39 All HF-ESR measurements
were performed in transmission geometry and Faraday
configuration, i.e. with wave vector of the microwaves
being parallel to the external field.

The neutron diffraction measurements were performed
on D23 instrument in Institut Laue-Langevin (Grenoble,
France). The fully deuterated sample of CPB was
mounted on the dilution refrigerator stick, installed on
a standard ILL Orange cryostat. Incident neutron beam
with wavelength λ = 2.375 Å was provided by the PG
monochromator. The measurements were performed in a
standard geometry with a single 3He detector.

IV. MAGNETIZATION

The temperature dependence of the magnetization of
a CPB sample was measured with a small applied field
of about 0.1 T upon heating after zero field cooling. In
one of the measurements the external field was oriented
approximately along the chain axis, while in another one
it was applied nearly perpendicular to this axis. In the
following we neglect small misalignments of the crystal
and consider susceptibilities defined as the magnetization
divided by the small field of 0.1 T (see App. A). We
label the two susceptibilities and the corresponding data
sets by (‖) for H ‖ [001] and by (⊥) for H ⊥ [001],
respectively. Static susceptibilities extracted from the
two measurements are shown in Fig. 3.

For both orientations the behavior of the suscepti-
bility is qualitatively similar, showing a Bonner-Fisher
maximum,40 which is typical for spin-1/2 chains and
whose position and height are mainly related to the
strength of the exchange interaction. The fact that the
two susceptibility curves differ from each other by a con-
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FIG. 3. Static susceptibilities of CPB for two orientations of
the small magnetic field of 0.1 T (‖ and ⊥ to the c axis) as func-
tions of temperature. Open symbols indicate measured data
(minus offsets and divided by geometry factors, see Eqs. (6)).
For the sake of clarity, only every sixth of these data points is
plotted in the main plot and every second point in the inset.

Solid lines show the best fit χ
(‖,⊥)
fit (T ) = χ(0)(T ) + χ

(‖,⊥)
corr (T ),

corresponding to J/kB = 52.0 K and δ = −0.019 (see text).
The excellent match between calculated and measured data is
emphasized in the inset. Vertical lines indicate the positions
of the Bonner-Fisher maxima. The difference in height can be
mainly attributed to the g-factors of the two field directions.

stant factor over a wide temperature range can be mainly
attributed to the g-factor anisotropy, which can be ex-
tracted from the angular dependence of the resonance field
of our ESR data at high temperatures (see Sec. V A), and
to geometry factors taking the sample shape into account.
The small difference of the positions of the two maxima
can be explained by a small anisotropy of the exchange in-
teraction. Assuming the former to be of Ising type we may
use first order perturbation theory (see App. A), valid for
all temperatures T � Jδ/kB with Boltzmann’s constant
kB , in order to estimate the parameter δ of Eq. (1).

From the angular dependence of the ESR data in
Sec. V A we conclude that the anisotropy axes of the spin
chains in our material are perpendicular to the c axis. This
means that for χ(‖) the magnetic field is perpendicular to
the anisotropy axes. Denoting the magnetic field direc-
tion by z, the perturbation term becomes Jδ

∑
〈ij〉 s

x
i s
x
j ,

and the first order correction to the isotropic suscepti-
bility, χ(0)(T ) = g2µ2

B 〈sz1〉T,h,0 /h with Zeeman energy

h = gµBµ0H, takes the form (see App. A 2)

χ(‖)
corr(T ) =

g2µ2
BJδ

h

d

dh
〈sx1sx2〉T,h,0 . (3)

Here, the subscripts at 〈·〉T,h,0 mean that the thermal
expectation value has to be evaluated with the isotropic
Hamiltonian, i.e. Eq. (1) with δ = 0, supplemented by
the Zeeman term −hSz = −gµBµ0H

∑
j s
z
j .

For χ(⊥) the magnetic field lies in the a′-b plane. De-

noting its direction again by z, the anisotropic part of
the Hamiltonian of one of the two inequivalent chains in
CPB reads

Hϑ = Jδ
∑
〈ij〉

(cosϑ szi − sinϑ sxi )(cosϑ szj − sinϑ sxj ) , (4)

where ϑ is the angle between magnetic field and the
corresponding anisotropy axis. If we take into account
that the anisotropy axes of the two chains are almost
perpendicular to each other, and if we further neglect the
small anisotropy of the g-factor inside the a′-b plane (see
Sec. V A), the first order contribution of both chain types
to the total susceptibility simplifies to the arithmetic mean
of the individual contributions and is therefore given by

χ(⊥)
corr(T ) =

g2µ2
BJδ

2h

d

dh
〈sz1sz2 + sx1s

x
2〉T,h,0 . (5)

Everything is now reduced to quantities that can be calcu-
lated exactly in the thermodynamic limit. The isotropic
part χ(0)(T ) of the static susceptibility and its corrections
(3) and (5) can be most efficiently computed by solving a
simple and finite set of non-linear integral equations aris-
ing within the so-called quantum transfer matrix approach
to the thermodynamics of integrable lattice models.23,24

We fitted the theoretical predictions

χ(‖)(T ) = A(‖)
(
χ(0)(T ) + χ(‖)

corr(T )
)

+ χ
(‖)
0 , (6a)

χ(⊥)(T ) = A(⊥)
(
χ(0)(T ) + χ(⊥)

corr(T )
)

+ χ
(⊥)
0 , (6b)

to the measured data χ
(‖)
i and χ

(⊥)
i , respectively. Here,

A(‖,⊥) are dimensionless geometry factors and χ
(‖,⊥)
0 are

offsets of the data sets χ
(‖,⊥)
i measured in units emu/mol.

We derive the general structure of these equations in
App. A 1.

The fit values of the isotropic coupling J and the
anisotropy parameter δ depend on the chosen temper-
ature range [Ta, Tb] of the fit. We varied the lower bound
Ta from 16 K to 32 K and the upper bound Tb from 200 K
to 325 K. Values of Ta smaller than 22 K or values of Tb
larger than 285 K suddenly decrease the quality of the fit.
The former makes sense since a perturbation expansion,
as given in Eqs. (6), is only valid for T � Jδ/kB ≈ 1 K.
The latter is due to more noise and perhaps a systematic
error in the susceptibility data above room temperature.
The best fit is obtained for Ta = 23.5 K and Tb = 285 K
and yields

J/kB = 52.0 K± 0.1 K , (7)

δ = −0.019± 0.002 ≈ −0.02 . (8)

Offsets and prefactors are χ
(‖)
0 = 1.46 · 10−4 emu/mol,

χ
(⊥)
0 = −2.77 · 10−4 emu/mol and A(‖) · (g(‖))2 = 4.48,

A(⊥) · (g(⊥))2 = 4.55, respectively. If we set g(‖) = gc =
2.154 and g(⊥) ≈ 2.069 as obtained by means of ESR
spectroscopy in Sec. V, the latter value being an estimated
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average over g-values in the a′-b plane, both geometry
factors are close to one, A(‖) = 0.97, A(⊥) = 1.06.

Figure 3 shows the data sets (χ
(‖,⊥)
i −χ(‖,⊥)

0 )/A(‖,⊥) to-

gether with the two curves χ(0)(T )+χ
(‖,⊥)
corr (T ) of the best

fit with δ = −0.019 and J/kB = 52.0 K. The fit provides
a reliable estimate of the anisotropy in CPB (for details
see App. A). The relative positions of the two maxima
(see inset of Fig. 3) already give a clear hint at the sign
of δ. The fact that the position of the maximum of χ(‖)(T )
is slightly shifted to higher temperatures as compared to
the one of χ(⊥)(T ) implies that the anisotropy is negative
and small (see Eq. (A14) in App. A 2) meaning that the
Hamiltonian is critical in zero magnetic field.

In the low-temperature regime T ≤ 3 K our susceptibil-
ity data show a strong decrease with decreasing tempera-
tures and the curves obtained from a perturbation expan-
sion in δ deviate from the experimental data (see inset
of Fig. 3). This is compatible with the fact that the per-
turbation expansion is only valid for T � Jδ/kB ≈ 1 K.
The low-temperature behavior might be qualitatively ex-
plained by an effective magnetic excitation gap which
opens if the applied field is perpendicular to the anisotropy
axis41,42 or by the proximity of the 3d antiferromagnetic
phase transition at TN ≈ 0.72 K.

V. ESR ON CU(PY)2BR2

A. Angular dependence of ESR parameters

We study the angular dependence of the ESR spectrum
of CPB at room temperature and for a fixed frequency of
ν = 9.56 GHz. We recorded three data sets. For two of
them the c axis of the sample was initially aligned with the
external field, then rotated away from the field direction
by 90◦. A third data set pertains to a rotation about the
c axis which enclosed an angle of 90◦ with the external
field. This data set corresponds to a rotation of the field
in the a′-b plane in the reference frame of the sample. In
Fig. 2 we show the local octahedral environment of the
Cu2+ ions of one of the two inequivalent chains and its
relative position to the crystallographic frame (a′,b, c).

All recorded spectra show single spectral lines from
which we extracted the resonance fields H and linewidths
w as functions of the rotation angle α. The corresponding
curves of ESR parameters are shown in Figs. 4 and 5 as
black squares.

It turns out that the analysis of these curves is rather
intricate. This is first of all due to the fact that we are
dealing with two inequivalent chains (see Fig. 1) meaning
that we have to interpret the recorded spectral lines as
superpositions of two individual lines which are so close
to each other that they are not resolved at the applied
frequency. Note that in principle —besides the exchange
narrowing effect due to intrachain interaction given by J—
there might be an additional exchange narrowing effect
caused by interchain interactions J ′, which would lead

to the fusion of the two spectral lines.35,43 Such effect
might be anticipated from the fact that in case of CPB
J ′ is larger than the difference in Zeeman energies of the
inequivalent chains. However, angular dependencies of
ESR parameters of the resulting single line are not com-
patible with our results obtained by rotation of magnetic
field in a-b-plane, which can be described only in terms
of contributions from two individual lines, see below.

A second difficulty arising in the analysis of our data
comes from the fact that the octahedra surrounding the
magnetically active Cu2+ ions are distorted in such a way
that the cubic symmetry of the undistorted octahedra
is fully broken. This implies that we are dealing with
the most general possible g-tensor which, as a symmetric
rank two tensor, depends on six independent parameters,
e.g. its eigenvalues g1, g2, g3 and three angles fixing its
orientation in space. We may therefore write it as

ĝ = D diag(g1, g2, g3)Dt , (9)

where D is the rotation matrix transforming the principle
coordinate system of the g-tensor into the crystallographic
frame (a′,b, c). The g-factor anisotropy is caused by spin-
orbit coupling which mixes, in the case of Cu2+ ions, some
of the t2g states to the ground state, i.e. the dx2−y2 state.44

Since the anisotropy is small we expect a close-to-isotropic
g-tensor, i.e. g1 ≈ g2 ≈ g3.

We analyze the angular dependence of the ESR param-
eters based on the model of two non-interacting inequiv-
alent XXZ chains. In the following, we denote Bohr’s
magneton by µB, the permeability of free space by µ0,
and Planck’s constant by 2π~. The letter h is already
used as abbreviation for the Zeeman energy h = gµBµ0H
and should not be confused with Planck’s constant. For
a single chain our theory relies on perturbation theory in
δ, on an analysis of the moments of the shape function,
and on a high-temperature expansion in J/(kBT ) for the
resonance shift s(δ) and the linewidth w (see App. B 1).
The resonance shift is related to the resonance field H by

H =
~ω − Js(δ)
gµBµ0

. (10)

Here, ν = ω/(2π) is the frequency of the incident mi-
crowaves and g = ‖ĝe‖, where e is the unit vector in the
direction of the external magnetic field. To leading order
in J/(kBT ) we obtain the following expression for the
resonance shift (see Eq. (B16b) of App. B 1),

s(δ) =
Jδ

4kBT

[
(1− 3 cos2 ϑ)

~ω
J

+ (1 + cos2 ϑ)
δ

2

]
(11)

with ϑ being the angle between the magnetic field direc-
tion ĝe/g at the Cu sites and the anisotropy axis of the
chain. Note that up to first order in δ the frequency term
~ω can be replaced by gµBµ0H. This relation will be
also proven useful for the analysis of high-frequency ESR
measurements at high temperatures in the next section.

In 1d systems the usual exchange narrowing argument
fails. It can be replaced by a modified argument, leading
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FIG. 4. Angular dependence of the measured resonance field
for CPB (dots) at frequency ν = 9.56 GHz and at room tem-
perature for rotation of the magnetic field in planes containing
the c axis (top and middle) and in the a′-b plane (bottom),
compared to the fitted theoretical curves µ0H (solid lines).
Dashed lines indicate the resonance fields µ0H1,2 of the two
individual, unresolved lines (see Eq. (13) and text).

to ‘inhibited exchange narrowing’.35 Further elaborating
on this idea we derive a novel formula for the linewidth for
small δ and in the high-temperature regime (see App. B 1),

w ≈ AJ

gµBµ0

[
δ2

4
(1 + cos2 ϑ)

]β
. (12)

The proportionality factor A is unknown and should be
of order one. As explained in App. B 1, the exponent β
is connected with the decay of a certain time-dependent
correlation function in the isotropic system at high tem-
perature.

Eqs. (10), (11) and (12) determine the resonance field
and linewidth of the absorption spectrum of a single XXZ
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FIG. 5. Angular dependence of the measured ESR linewidth
for CPB (dots) at frequency ν = 9.56 GHz and at room tem-
perature for rotation of the magnetic field in planes containing
the c axis (top and middle) and in the a′-b plane (bottom),
compared to the fitted theoretical curves µ0w (solid lines).
Dashed lines indicate the linewidths µ0w1 and µ0w2 of the
two individual, unresolved lines (see Eq. (14) and text).

chain with small anisotropy and in the high-temperature
regime. We still have to take into account that the ob-
served spectra must be interpreted as the superposition
of the spectra of two types of chains, type 1 and type 2,
which are distinguished by the orientation of their g-
tensors and anisotropy axes. We shall assume for simplic-
ity that in its center each of the two spectral lines can
be approximated by a Lorentzian and that the two lines
have equal spectral weight. For two equally normalized
Lorentzians with maxima at H1, H2 and widths w1, w2

their sum is well approximated again by a Lorentzian
if only |H1 − H2| � min{w1, w2}. The location of the
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maximum of the resulting line is approximated by

H =
H1w

−3
1 +H2w

−3
2

w−3
1 + w−3

2

+O(ε3Hεw) (13)

and its width w can be expressed as

w =

√√
w2

1w
2
2 +

(w1 − w2)4

4
− (w1 − w2)2

2

+
(H1 −H2)2

w1 + w2

(
3

4
− 25

8

(
w1 − w2

w1 + w2

)2
)

+O(ε3H , ε
2
Hε

4
w) (14)

with small numbers εw = (w1 − w2)/(w1 + w2) and
εH = (H1 − H2)/(w1 + w2). The formula for the lo-
cation H of the maximum represents a weighted mean of
the two resonance fields H1 and H2 with weights 1/w3

1,2.
Note that it holds for other line shapes than Lorentzians,
e.g. for a superposition of two Gaussians, too. The first
line in expression (14) for the resulting width w can be
understood as a modified geometric mean of two individ-
ual widths w1 and w2, whereas the second line reflects an
additional broadening caused by the finite distance of the
maxima positions.

We fit derivatives of Lorentzians to the measured spec-
tral lines as, due to the use of lock-in techniques, the
derivative of the absorption line was recorded in our
low-frequency ESR experiments. We identify Lorentz pa-
rameters ‘position’ and ‘width’ with H and w of Eqs. (13)
and (14), respectively. For the individual resonance shifts
H1, H2 and linewidths w1, w2 of the two types of lines we
have used Eqs. (10) and (12) with the respective orienta-
tions of the g-tensors and anisotropy axes. Taking these
equations as they are, the number of parameters to be
determined would be too large for a stable fit. Ideally the
following parameters of the model should be extracted
from a fit: the anisotropy δ, the eigenvalues g1, g2, g3 of
the g-tensor, 2× 3 angles fixing the rotation matrices D1

and D2 that determine the orientation of the g-tensors
of the two types of chains, 2 × 2 angles fixing two unit
vectors d1, d2 defining the direction of the anisotropy
axes of the two types of chains, and finally the parameters
A and β entering Eq. (12).

In order to reduce the number of unknowns of the fit,
we fix the ‘geometric parameters’ D1, D2 and d1, d2

by resorting to the crystal structure (see Sec. III) and
by inspecting the qualitative behavior of the data. We
have seen in Sec. III that the two inequivalent chains
in CPB are related by a glide reflection with reflection
component R = diag(1,−1, 1) representing a reflection
at the a-c plane. This implies that RD1 = D2R and
Rd1 = d2, i.e. g-tensors and anisotropy axes of the two
chains must be related by this reflection. It is convenient
to specify the direction e of the external magnetic field
in terms of spherical coordinates θ, φ with respect to
the crystallographic frame (a′,b, c). Then, e = e(θ, φ)
and the g-factors gj = ‖ĝje‖, j = 1, 2, of the two chains

become functions of θ and φ. Eq. (9) implies that gj(θ, φ)
is periodic in θ with period 180◦, that gj(0, φ) is periodic
in φ, also with period 180◦, and that g2(θ, φ) = g1(θ,−φ).

The most striking feature of the experimental resonance
shift and linewidth shown in Figs. 4 and 5 is that they
exhibit a 180◦ periodicity if the field is rotated in planes
perpendicular to the a′-b plane, but a 90◦ periodicity if
the field is rotated within the a′-b plane. The g-factors
of the individual chains have a periodicity of 180◦ for
all rotation directions. The periods of resonance field
and linewidth induced by the anisotropy of the individual
chains are 180◦, too, as can be seen from Eqs. (11), (12).
Thus, any shorter period or modulation must come from
the superposition of the resonance lines of the two chains.

Let us first consider the variation of the linewidth (see
Eqs. (12) and (14) as well as Fig. 5). In Eq. (12) the vari-
ation of the g-factor with the external field is a subleading
effect, the main variation of the width coming from the
variation of ϑ. In the upper two panels of Fig. 5 no mod-
ulation of the 180◦ periodicity is visible, showing that
both angles ϑ1 and ϑ2 and thus both individual widths w1

and w2 have the same monotonic behavior as function of
rotation angle α. By contrast, the 90◦ modulation of the
width in the lower panel points towards a phase difference
of about 90◦ between ϑ1 and ϑ2. This can be understood
if the anisotropy axes lie in the a′-b plane and are almost
perpendicular to each other. Taking into account that
Rd1 = d2, they should enclose an angle of about 45◦ with
the a′ axis. Thus, the anisotropy axis should either be
directed along the projection of the stretched octahedron
axes onto the a′-b plane or perpendicular to this direction.
Only the latter case is (approximately) in accordance with
the reflection symmetries of the deformed octahedra. For
this reason we conclude that the anisotropy axes of the
chains are located in the a′-b plane and enclose angles
±(90◦ − φa′) = ±46.56◦ with the a′ axis. As we shall see
this will also explain the behavior of the resonance field,
Eqs. (10) and (11), if the g-tensor anisotropy is properly
taken into account.

For the g-tensor anisotropy we hypothesize that it is
entirely due to the deformation of the octahedra formed
by the Br and N atoms surrounding the magnetically
active Cu2+ spin. Then, the g-tensor should be diagonal
in a coordinate system symmetrically attached to the
deformed octahedra. Denoting by D(α,n) the matrix for
a rotation about an axis n by an angle α, we are setting

D1 = D(φa′ , c)D(−θc,b) , (15a)

D2 = D(−φa′ , c)D(−θc,b) , (15b)

which means that we are neglecting the small declination
away from the a′-b plane of the line connecting the ni-
trogen atoms in the octahedron (see Sec. III and Fig. 2).
The above notation is also useful to represent d1 and d2

explicitly as

d1,2 = D(±φa′ , c)b = D(±(90◦ − φa′), c)a′ , (16)

which means that the anisotropy axis of each chain co-
incides with the connecting line of the two nitrogen ions
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(see Fig. 2).
Presuming Eqs. (15) and (16) we have reduced the

model parameters to be fitted to the angular dependence
of the high-temperature ESR data to δ, g1, g2, g3, A, and
β. We reduce the number of these parameters further
by using δ = −0.019 as obtained from our susceptibility
measurements. Except for these model parameters we
also have to determine some experimental parameters con-
nected with the limited control over the sample position
during our measurements, which are described below.

The best fit yields for the remaining model parameters

(g1, g2, g3) = (2.065, 2.018, 2.203) , (17)

A = 1.3 , (18)

β = 0.77 . (19)

The estimated error of β is about 3 % and those of the
three g-values g1,2,3 are less than 0.5 %. The three values
of g1,2,3 in Eq. (17) together with Eqs. (15) determine
the full g-tensor for both chain types and are typical for
Cu2+ ions in an octahedral environment.44 For a magnetic
field applied along the chain axes, the g-factors of both
chain types are the same due to reflection symmetry and
take the value gc = 2.154. This value is in excellent
agreement with the value obtained independently from
high-frequency measurements (see Sec. V B below).

For a different choice of the model parameter δ, say
δ = −0.01, −0.03, or −0.05, the best fit yields similar
values of g1 and g3 as well as of β, all lying in the estimated
error intervals. This can be understood by the observation
that the effect of δ on the resonance position at high
temperatures in Eq. (10) is very small: s(δ) ∼ δ/T . The
variation of the fit parameter g2 with δ is slightly larger
(up to 1.5 %), leading to values g2 ≤ 2 for δ < −0.04.
Furthermore, the model parameter δ enters the formula
of the linewidth, Eq. (12), via the prefactor A · δ2β . If δ
was too small in absolute value this would yield values of
A not of order one, in contradiction to our expectation
(see App. B 1). This way and by demanding that g2 > 2
we can exclude values of δ greater than −0.01 and less
than −0.04, in agreement with our previous findings.

Except for the model parameters the fit yields a number
of experimental parameters, for instance ‘off-plane’ angles

φ
(1,2)
op and θ

(a′b)
op . The former are angles between the b-

c plane (label 1) or the a-c plane (label 2) and planes

rotated about the c axis by φ
(1,2)
op . Their meaning is that

during the corresponding measurement (labels (1) and
(2) in Figs. 4 and 5) the crystal was rotated such that
the external magnetic field was lying in these rotated
planes rather than in the unrotated b-c or a-c planes.
During the rotation of the third measurement (label (3)

in Figs. 4 and 5) the a′-b plane enclosed an angle θ
(a′b)
op

with the external magnetic field. Since θ
(a′b)
op is small

(see below) we can neglect it and call this a rotation of
the magnetic field inside the a′-b plane. Further, offset

angles α
(1,2,a′b)
os are determined by the fit. They describe

(small) misalignments of the external magnetic field with

crystallographic axes, e.g. the c axis for measurements
(1) and (2) or the a′ axis for measurement (3), at α = 0.
They read

(φ(1)
op , φ

(2)
op , θ

(a′b)
op ) = (−6.4◦, 26.9◦, 1.2◦) , (20)

(α(1)
os , α

(2)
os , α

(a′b)
os ) = (5.6◦, 1.9◦, −0.9◦) . (21)

The values of θ
(a′b)
op , α

(2)
os , and α

(a′b)
os are negligible. The

order of magnitude of α
(1)
os ∼ 5◦ − 10◦ could have been

already estimated by eye from the corresponding data
sets of the upper panels of Figs. 4 and 5.

Figures 4 and 5 show the experimental data (black
dots) together with the fitted theoretical curves (red solid
lines) for the angular dependence of resonance position
and linewidth. The red dashed lines represent the contri-
butions from the two inequivalent chains. The linewidth,
measured as width at half height, of the sum of a broad
and a narrow line is dominated by the width of the narrow
line. In all cases we assume equal intensities of the two
lines composing the observed spectral line. Therefore, the
width of the observed line is minimal if the linewidth of
one of the two contributing lines has a minimum (see lower
panel of Fig. 5). From our point of view the agreement of
the fitted curves H(α) and w(α) with the measured data
points is rather convincing in all three cases.

In conclusion, from the angular dependence of the ESR
parameters measured at room temperature T � J/kB ≈
52.0 K, the eigenvalues of the g-tensor could be deter-
mined. The scenario of two anisotropy axes in the a′-b
plane explains the observed angular dependence of reso-
nance field and linewidth. Furthermore, from heuristic
arguments the possible value of δ could be restricted to the
interval [−0.04,−0.01] which is compatible with the value
of δ = −0.019 obtained from susceptibility measurements.
Additionally, the values of A and β in Eq. (12) could be
estimated. We expect that, due to further progress in
theory, they may be calculated one day. For the time
being they provide experimentally measured quantities
of certain time-dependent correlation functions of the
isotropic Heisenberg chain. The value of β = 0.77, for
instance, is related to the algebraic long-time decay of the
finite-temperature correlation function (T ≈ 6J/kB) that
appears under the integral of Eq. (B14c) (see Eqs. (B21)-
(B23) in App. B, valid at high temperatures).

In the infinite temperature limit this correlation func-
tion simplifies to

g∞(t) =
4

2LL

L∑
j,k=1

Tr
{
eiHxxxts+

j s
+
j+1e

−iHxxxts−k s
−
k+1

}
' α(Jt)−γ∞ (22)

with γ∞ = 0.6, i.e. β∞ = 0.71 (see App. B 3). The
value of β = 0.77, i.e. γ = 0.70, at T ≈ 6J/kB is in
accordance with a numerical analysis that we performed
for finite temperatures, 1 ≤ kBT/J ≤ 100, and up to 28
lattice sites, similar to the one in App. B 3 for infinite
temperature (see e.g. Fig. 12).
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FIG. 6. Frequency-field dependence of resonance positions for
CPB at 300 K and 4 K with external magnetic field oriented
along the c axis. Arrows in the main plot indicate the res-
onance positions of the selected ESR spectra shown in the
inset, recorded at 4 K and, for a better comparison, shifted
horizontally by the paramagnetic resonance frequency as well
as vertically by arbitrary amounts.

B. Frequency dependence of the resonance position

We conducted HF-ESR studies of the resonance shift
of the spectral line for comparison with calculations pre-
sented in Refs. 30, 32 and Refs. 27, 28. Measurements of
the frequency dependence of the ESR parameters were
performed at 4 K and 300 K in a frequency range from
50 GHz to 325 GHz on a sample which was oriented such
that H || [001]. The results for the resonance positions at
both temperatures are shown in Fig. 6.

In paramagnets the resonance field and the absorption
frequency of spins probed in ESR experiments are linear
functions of each other. In the presence of spin-orbit cou-
pling the resonating spin is sensitive to the crystal field of
its paramagnetic environment whose reaction to an exter-
nal magnetic field is then encoded in the (ionic) g-tensor.
Antiferromagnetic exchange coupling between neighbor-
ing spins induces an additional shift of the resonance
position, which is a pure many-body effect and depends
on the exchange anisotropy, quantified by δ in our case.
In theory it is easy and natural to distinguish between the
effect of the g-tensor and the (many-body) resonance shift
s(δ), see Eq. (10). In experiments, however, it may be
difficult to separate the two effects, because s(δ) depends
linearly on the field for small fields. In Refs. 27 and 28
some of us derived a formula that allows to compute the
resonance shift at arbitrary temperature for a single XXZ
chain with the magnetic field applied in the direction of
the anisotropy axis. A strong deviation from the linear
behavior for large enough magnetic fields (h/J & 0.1)
and not too small anisotropy (e.g. δ ≈ −0.1) of the model
Hamiltonian (1) was found. However, it turned out that

the anisotropy of CPB is too small and that the magnetic
fields realizable in our experiments are not strong enough
to find a pronounced deviation from the linear behavior.

Still, a careful analysis of our data allows us to extract
the resonance shift at high and low temperatures. From
the analysis of the ESR data recorded at high-temperature
and with an external field in c direction we obtain, based
on Eq. (11) with ϑ = 90◦, an estimate of the g-value gc.
The shift at high temperatures is small and proportional
to the resonance field itself. Therefore, it can be absorbed
into the proportionality factor denoted by m in Eq. (24),
which is sometimes called an ‘effective g-factor’. The
temperature independent value gc can then be obtained by
fitting a straight line to the resonance position measured
at high temperatures, and taking the first order high-
temperature correction into account. Furthermore, higher
corrections imply a way to estimate the magnitude of δ.

At low temperature the resonance shift as a function of
the resonance field shows stronger deviation from linear be-
havior. Fitting different theoretical predictions27,28,30,32

we shall obtain two more estimates of the anisotropy
parameter δ. Both of them are compatible with our pre-
viously obtained values within the estimated errors.

Another approach45 that works for small system sizes at
zero temperature is based on Bethe ansatz techniques and
identifies a certain excited state above the ground state
that contributes most (as compared to all other states,
at least for small system sizes) to the ESR absorption
spectrum. We computed the difference of the energy of
this state to the ground state energy for different magnetic
fields up to system size L = 256 by means of Bethe ansatz.
The dependence of this energy difference on the magnetic
field agrees well with the corresponding resonance shifts
of the measured spectra at low temperatures for all used
frequencies and is in accordance with field theory and the
moment-based approach considered in more detail below.

1. High temperatures

At T = 300 K we observed single resonance lines which
show a linear frequency-field relation (see Fig. 6). In the
high-temperature regime and for small anisotropies, the
resonance condition for the frequency ν = ω/(2π) of the
incident microwave and the resonance field Hres reads
(see Eqs. (10) and (11) with ϑ = 90◦)

~ω
J

= gc

(
1 +

Jδ

4kBT

)
µBµ0Hres

J
+

Jδ2

8kBT
. (23)

This explicit expression is deduced from a perturbation
expansion in δ up to second order and a high-temperature
expansion up to J/(kBT ) of the shifted moment m1,
cf. Eqs. (B10), (B12b) and (B16b). We fit the function
y = mx+ b with dimensionless quantities y = ~ω/J and
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x = µBµ0Hres/J to the high-temperature data and obtain

m = gc

(
1 +

Jδ

4kBT

)
= 2.1512 , (24)

b =
Jδ2

8kBT
= 5 · 10−6 . (25)

Setting J/kB = 52.0 K and T = 300 K, Eq. (25) provides
an estimate of the magnitude of the anisotropy, |δ| ≈
0.015. We would like to point out, however, that the error
of b is larger than b itself, implying that the estimate of
|δ| from Eq. (25) is not reliable. This is mainly due to
the fact that the anisotropy δ of CPB is small and that
the y axis intercept b is proportional to δ2. However, at
least an upper bound of the order of magnitude can be
estimated and agrees well with previous findings of δ. For
other materials with larger anisotropy this method would
provide a way to estimate δ with a smaller relative error.

We still use this value of δ to estimate the g-factor gc
in c direction from Eq. (24), since previously obtained
more reliable values, e.g. δ = −0.019, are close enough
to δ = −0.015. Within the fit error of m, which is less
than 0.1 %, these more reliable values would result in
the same value of gc = 2.153. This g-value, in turn, is
in excellent agreement with gc = 2.154 obtained in the
previous section by fitting to angular-dependent data.

2. Low temperatures

The temperature-independent value of gc = 2.153 can
be used in the analysis of the resonance shift at low tem-
peratures. Spectra recorded at 4 K consist of a resonance
line (line 1 in the inset of Fig. 6) present at all frequen-
cies and a second line (line 2) which evolves for higher
frequencies and is clearly visible above 141 GHz. Both
lines show an almost linear frequency-field dependence.
The deviations from a straight line can be attributed to
the resonance shift, which is shown in Fig. 7.

We compare three theoretical predictions for the res-
onance shift at low temperatures, T � J/kB, with the
experimentally observed data at T = 4 K (black squares
in Fig. 7). To this end, we subtract the dimensionless reso-
nance fields h/J = gcµBµ0Hres/J from the corresponding
dimensionless frequencies 2π~ν/J = ~ω/J . The result
defines the dimensionless ESR resonance shift s(T, h, δ).

The first prediction for the shift s(T, h, δ) was ob-
tained by Oshikawa and Affleck within a field theoretical
approach30 (blue lines in Fig. 7). It is supposed to hold
for T → 0 and reads

s0(h, δ) := lim
T→0

s(T, h, δ) ' hδ

Jπ2
ln

(
J

h

)
. (26)

The second prediction (red lines in Fig. 7) is due to Maeda,
Sakai, and Oshikawa.32 It extends Eq. (26) to larger reso-
nance fields as it includes logarithmic corrections to field
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FIG. 7. Resonance shift for CPB at 4 K with magnetic field
oriented along the c axis, calculated from resonance positions
presented in Fig. 6. Experimental data (squares) are com-
pared with different theoretical predictions (solid lines for the
averaged shift, dashed lines for the shifts of line 1 and line 2).
Frequencies and resonance fields are rendered dimensionless
by multiplying with ~/J and gcµBµ0/J (with temperature
independent gc = 2.153; see Sec. V B 1). Arrows indicate the
shifts of the exemplary spectra shown in the inset of Fig. 6.

theory,

s0(h, δ) =
hδ

Jπ2

{
L+

ln(L)

2
+

3

2
+

1 + ln(L)

4L

}
(27)

with L = ln[2J
√
π3/(h

√
2e)]. This equation was derived

from the finite temperature result of Ref. 32 (extended to
arbitrary anisotropy in Ref. 27) by taking the zero tem-
perature limit and expanding for small Zeeman energies h.
In this work we use a different definition of the resonance
shift (see App. B 1) as compared to Refs. 32 and 27. Up
to first order in δ, however, the resonance shift at finite
temperature is determined by the same combination of
static correlation functions,

s(T, h, δ) = δ
〈sz1sz2 − sx1sx2〉T,h,0

〈sz1〉T,h,0
. (28)

Finite temperature correlation functions as 〈sz1sz2〉T,h,0,

〈sx1sx2〉T,h,0, or the magnetization 〈sz1〉T,h,0 per lattice site

of the isotropic spin-1/2 chain can be efficiently com-
puted using the quantum transfer matrix approach of
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Ref. 23 which reduces the problem to solving a finite set
of well-behaved non-linear integral equations (black lines
in Fig. 7). Note that in Eqs. (26), (27), and (28) there
is, in general, an angular dependent prefactor 3 cos2 ϑ− 1
(see Eq. (B13b) in App. B) which is −1 here, since the
magnetic field is perpendicular to the anisotropy axis.

The three different theoretical curves (26), (27), and
(28), for several values of δ, are shown in Fig. 7, where
the resonance shift is plotted as a function of h/(gcJ) =
µBµ0Hres/J and compared with the experimental data.
We observe that Eq. (26) (solid and dashed blue lines
in Fig. 7) is not fully consistent with our experimental
data. The best fit to the averaged shift extracted from
the two lines (full black squares in Fig. 7) over the full
range of applied resonance fields yields δ = −0.037. On
the other hand, an extrapolation of the experimental
data for the shift of line 1 (upper curve of open black
squares) to small values of h/J and an asymptotic fit
by eye of Eq. (26) (dashed blue line) gives δ = −0.015,
which is compatible with our previous values. Eq. (26)
fails to explain the experimental data at higher resonance
fields because the validity of this formula is restricted to
kBT/J � h/J � 1. But for the experimentally measured
resonance fields µ0Hres & 4 T, i.e. h/(gcJ) & 0.05 (see
Fig. 6), the condition h/J � 1 is not sufficiently fulfilled.

In dimensionless units the temperature of 4 K at which
our data were recorded translates to kBT/J ≈ 0.08. Us-
ing Eq. (28), which is supposed to account of the full
temperature dependence and which is valid for all reso-
nance fields, the quality of the fit increases considerably
(see solid and dashed black lines in Fig. 7). The only free
parameter in this case is the overall prefactor δ in Eq. (28).
A fit to the averaged shift (full black squares), to the shift
of line 1 (open black squares, upper curve), and to the
shift of line 2 (open black squares, lower curve) implies
δ = −0.012, δ = −0.008, and δ = −0.017, respectively.

For comparison, we also show Eq. (27) in Fig. 7. It
includes higher corrections in the magnitude of the reso-
nance field but no temperature corrections. The difference
between Eqs. (27) and (28) is therefore mostly due to the
temperature. In order to illustrate its effect we use the δ
values obtained from the fit of s(T, h, δ) in both cases.

In summary, we can infer from Fig. 7 that the field
theoretical result (26) is insufficient to explain our data
for the field dependence of the resonance shift in the full
range h/J . 0.3. At least the logarithmic corrections
of Eq. (26) have to be taken into account. The effect
of small finite temperatures (T = 4 K ≈ 0.077J/kB) is
clearly visible, and our experimental data are better fitted
and provide better (slightly bigger) fit values of δ if the
temperature dependence is incorporated.

C. Temperature dependence of ESR parameters

In addition to the angular dependence of the ESR
parameters at room temperature and to the frequency
dependence of the resonance field at high and low tem-
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ature at 79.59 GHz with the external magnetic field applied
along the c axis, compared with theoretical curves based on
Eq. (28). The red solid line corresponds to δ = −0.015, the
dashed lines to δ = −0.012 and δ = −0.019.

peratures we measured the temperature dependence of
the ESR parameters for H || [001] in two different set-ups,
first in the range between 4 K and room temperature at
9.56 GHz, and second for temperatures between 1.6 K and
300 K at 79.59 GHz.

The low-frequency measurements revealed only a very
weak temperature dependence of the resonance shift.
From the HF-ESR measurements we were able to ex-
tract the resonance shift with sufficient resolution such
that we could compare with Eq. (28). The result is shown
in Fig. 8. We find the agreement of the theoretical predic-
tion with our measured data quite remarkable as no fitting
was applied, and the values of the model parameters J ,
δ, and gc were taken from our previous measurements.
Note, in particular, that the correct sign of δ and the
proper angular dependence (factor 3 cos2 ϑ− 1 in front of
the angular independent part of the resonance shift with
ϑ = 90◦) are crucial in order to match experimental and
theoretical curves.

The linewidth as a function of temperature, as obtained
in low-frequency ESR, is shown in Fig. 9. Coming from
high temperatures it increases until it reaches a maximum
of 74 mT at around 150 K and then decreases rapidly with
decreasing temperature. Below 10 K this decrease is less
steep and the linewidth reaches an apparently constant
value of 2.5 mT at 4 K. The behavior of the linewidth in
our high-frequency experiment is very similar for high and
intermediate temperatures and is also shown in Fig. 9.

For the temperature dependence of the linewidth we
have no reliable theoretical prediction so far. This is due
to the parameter values that characterize our compound,
specifically due to the very small value of the parameter δ
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which causes narrow lines and would require a frequency
resolution beyond the current possibilities of our numeri-
cal method (see Ref. 28). Analytical results for the full
moments, on the other hand, are available but can be
only applied if the magnetic field is directed along the
anisotropy axis, which is impossible as we are dealing
with two inequivalent chains with anisotropy axes almost
perpendicular to each other (see Sec. V A). Moreover,
these results do not compare well with the width at half
height as we have explained in Sec. II and in App. B.

In the framework of the phenomenological spin diffusion
theory the dynamics of the spin system is described by
a diffusion equation. For a one-dimensional system the
linewidth is then expected to be proportional to Tχ(T )
due to dominating q = 0 fluctuations.16 The product
Tχ(T ) is also shown in Fig. 9. We fitted the curves to the
data in the intermediate temperature range by adapting
the constant C in CTχ(T ). For T ≤ 150 K the linewidth
follows the Tχ(T ) behavior but considerably deviates from
it for temperatures above 150 K. These findings hold for
the low- as well as for the high-frequency measurements.
For the interpretation we should recall that spin diffusion
theory is a classical phenomenology which is expected to
give its best results in the high-temperature regime.

VI. NEUTRON SCATTERING

At TN ' 0.72 K the magnetic moments that are as-
signed to the electron spins of the Cu2+ ions in CPB
order three-dimensionally. The low-temperature neutron
diffraction experiment, after refining the lattice parame-
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FIG. 10. The results of neutron diffraction measurements on
D23 instrument. Left: Neutron diffraction intensity along
the (H, 0.5, 0.5) direction of the reciprocal space at the base
temperature. Magnetic Bragg peaks of (0, 0.5, 0.5)-type are
well pronounced. The solid lines are guide to the eye. Right:
Diffraction intensity as function of temperature for (0, 0.5, 0.5)
magnetic Bragg peak. Onset of magnetic scattering is visible
around TN ' 0.72 K.

ters of CPB to be approximately a = 8.33 Å, b = 17.51 Å,
c = 3.93 Å, and β = 96.6◦ at T = 1 K, allowed us to
establish the propagation vector of the magnetic struc-
ture Q = (0, 0.5, 0.5), which implies a collinear ordering.
Some corresponding magnetic Bragg peaks are shown in
Fig. 10. They disappear around the same TN as the µSR
and specific heat measurements suggest.17

The observed propagation vector is fully consistent with
the dominance of antiferromagnetic intrachain interac-
tion, J > 0. Magnetic moments of nearest neighbors in c
direction prefer to align in an opposite fashion. The body-
centered arrangement of spins within the unit cell leads
to a perfect frustration between the two chain subtypes.
Probably, it could be resolved via taking the quantum
fluctuations into account. Such order-by-disorder type of
mechanism is known to select the most collinear arrange-
ment from the degenerate manifold of states.46 A similar
example of system with interpenetrating collinear mag-
netic sublattices and perfect frustration between them is
found in the S = 1 quantum magnet DTN.46,47 We thus
propose a fully collinear arrangement of spins in CPB.
The tentative structure is shown in Fig. 1.

This low-temperature spin structure is supported by
our analysis of ESR data. Due to negativity of δ the
spins prefer to align inside the plane perpendicular to
the anisotropy axis (see Sec. V A) which is for each chain
the plane defined by the bromine ions (see Fig. 1). For
two of the inequivalent chains these planes are almost
perpendicular to each other. This leaves the antiferro-
magnetic arrangement of the spins along the chain as the
only plausible choice for the structure (see App. C).
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VII. CU(PY)2(CL1−xBRx)2: IMPACT OF
DOPING

Samples with two different Cl concentrations of 2%
(x = 0.98) and 5% (x = 0.95) were investigated in order
to study the influence of doping at the halogen sites on
spin dynamics. For both systems the angular dependence
of the ESR parameters at room temperature as well as
their temperature dependence was measured at 9.56 GHz.
The former measurements are qualitatively similar to
the results obtained for CPB and are not discussed any
further. As in the case of the pure compound, the angular
dependence could be used to identify the crystallographic
c axis. Measurements of the temperature dependence
were performed with magnetic field applied along the c
axis in the range between 4 K and room temperature.
A small shift of the resonance fields to higher values with
decreasing temperature was observed, similar to CPB.

The linewidth as a function of temperature is shown in
the upper panel of Fig. 11 for all three systems studied in
this work. Qualitatively, the behavior of the linewidth is
the same for the three compounds. However, a constant
low-temperature linewidth increases with increasing Cl
concentration while at high temperatures this trend is
reversed, i.e. the undoped compound shows the largest
linewidth. A possible reason for this behavior lies in the
different contributions to the linewidth.

The disorder in the crystals increases with increasing
Cl content. Thus, the inhomogeneous broadening of the
resonance lines, most likely caused by the local and spa-
tially varying alteration of the g-tensor, increases with
doping concentration as well. This effect is temperature
independent and dominates the linewidth at low temper-
atures, thereby explaining the observed changes of the
low-temperature linewidth.

The second contribution is given by spin dynamics of
the system whose temperature dependence can be stud-
ied by subtracting the contribution of inhomogeneous
broadening ∆H0 from the data. In the lower panel of
Fig. 11 linewidths are shown after subtraction. Note the
use of a linear temperature scale in this graph which is
better suited for the following discussion. In the high-
temperature regime, Eq. (12) holds and describes a linear
relation between linewidth and isotropic exchange. In
Ref. 17 the strength of effective isotropic exchange was
determined for CPB, CPC and various mixed compounds
with different Cl and Br contents. It was found that
isotropic exchange monotonically decreases with increas-
ing Cl doping and is minimal for CPC. This is in qualita-
tive agreement with the observed decrease of linewidth
for increasing Cl content. Quantitatively, however, the
relative change in ∆H is larger than the relative change
in J . This is illustrated by a dashed horizontal line in the
lower part of Fig. 11 which indicates the linewidth of the
5 % doped sample at 300 K as expected from the change
in J . Thus, the behavior of the linewidth cannot solely
be described in terms of change in isotropic exchange.

A possible explanation of this finding could be an ef-
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FIG. 11. Temperature dependence of the ESR linewidth
measured at 9.56 GHz for x = 1.0, 0.98, 0.95 (top) and of
the contribution governed by spin dynamics obtained after
subtracting the contribution of the inhomogeneous broadening
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lower panels. The magnetic field was applied along the c axis.
The blue dashed line indicates the linewidth for x = 0.95 as
expected from a relative change in J only.

fective decoupling of anisotropic exchange from isotropic
exchange, meaning that in Eq. (12) Jδ might vary in-
dependently of J as functions of doping. The exis-
tence of such a decoupling was shown theoretically48 and
experimentally49 in the case of chains with ferromagnetic
exchange coupling. Note that the Cu-Br-Cu bond angle
of the superexchange path is 89.64◦, i.e. close to 90◦ for
which one would expect a ferromagnetic exchange.50–52

The small deviation from 90◦ leads to an antiferromag-
netic but relatively weak isotropic exchange in accordance
with the experimentally determined value.
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VIII. DISCUSSION

In previous sections we presented a combined experi-
mental and theoretical study of the magnetic properties
of the spin chain compounds Cu(py)2(Cl1−xBrx)2 (x =
1.0, 0.98, 0.95). We begin the discussion of the obtained
results by considering ESR measurements of CPB per-
formed at low frequencies and room temperature. From
studies of the angular dependence of resonance position
and linewidth we inferred the existence of two distinct
anisotropy axes in this system. These axes are related
to the two magnetically inequivalent chain types and are
oriented almost perpendicular to each other within the
plane perpendicular to the chain axis. Moreover, they
coincide with the axis formed by the two nitrogen ligands
of the respective local octahedral environment of the Cu2+

ions (see Fig. 2). The insight into number and orientation
of anisotropy axes in this material is an important finding,
as it is an essential ingredient for modeling of our data.

Combining this knowledge with novel expressions for
the angular dependence of resonance field and linewidth
of individual chains (Eqs. (11) and (12), respectively) we
were able to describe the observed angular dependence of
both ESR parameters (see Figs. 4 and 5). Thereby, we
could determine the complete g-tensor of the pure com-
pound CPB. The g-factors obtained from the fit to our
measured data of the angular dependence of resonance
field and linewidth, Eq. (17), agree well with the values re-
ported in Ref. 43 for measurements of the g-factor angular
dependence in the a-c and b-c planes. In Ref. 43 Pal et al.
found for the g-factor in b direction gb = 2.065 which coin-
cides with our value. The minimal and maximal values of
the (effective) g-factor when rotating the field in the a-c

plane were found to be g
(max)
ac = 2.178 and g

(min)
ac = 2.056

around angles of −20◦ and 70◦, respectively (labeled by
g1, g2, and Ψ in Tab. 1 of Ref. 43). By means of our

fully determined g-tensor we obtain g
(max)
ac = 2.175 and

g
(min)
ac = 2.047 around −25◦ and +65◦. The differences

in g-factors might be attributed to two facts. First, the
authors of Ref. 43 do not take into account the resonance
shift due to the anisotropic exchange of the many-body
system. Secondly, they assume a g-tensor of cylindric sym-
metry (only g‖ and g⊥ in Ref. 43) whereas we consider it
to be more general with three different eigenvalues g1, g2,
and g3. On the other hand, we assume the principal axes
of the g-tensor to coincide with the symmetry axes of the
local octahedral environment of the Cu ions, whereas in
Ref. 43 the angle of the maximum position of gac is fitted
and disagrees by about 5◦ from our angle. Considering
the width of the observed resonance lines, their data of
‘peak-to-peak’ linewidths (see Fig. 4 in Ref. 43) agree well
with our data for widths at half height shown in Fig. 5.
The difference is a factor of about

√
3 which is typical

for Lorentzian-like lineshapes. Thus, our results are fully
consistent with previously published studies.

Furthermore, by fitting the angular dependence of the
linewidth, we could derive the exponent γ ≈ 0.7 of the

algebraic long-time decay of a certain correlation function
of the isotropic model at room temperature (T ≈ 6J/kB).
This correlation function describes the propagation of two
neighboring spin flips through the isotropic chain and en-
ters our theory through the perturbation expansion in the
anisotropy parameter δ. It is worthwhile mentioning, that
an analysis based on Eq. (12) is by no means restricted
to the specific system which is discussed here. Thus, our
findings may serve for the investigation of other close-to-
isotropic 1d systems thereby giving insight into their spin
dynamics. Finally, the fits to our angular dependent data
yielded a range of reasonable values for the anisotropy
parameter, −0.04 ≤ δ ≤ −0.01.

This information on δ was confirmed, and even more
specified, by a detailed analysis of magnetization mea-
surements which were performed on a CPB crystal for
external fields applied parallel and perpendicular to the
spin chains. The model used for the analysis takes into
account the anisotropy δ of the system as well as the
specific orientation of the two anisotropy axes. There-
fore, it extends the existing descriptions of isotropic 1d
chains like, for instance, the one employed in the ap-
proach of Ref. 37. Compared to values reported in litera-
ture, we obtained a refined value of the intrachain cou-
pling strength J = 4.48 meV, i.e. J/kB = 52.0 K, as well
as the anisotropic exchange coupling Jδ ≈ −0.09 meV,
i.e. δ ≈ −0.02, which was unknown up to now. The
value of J is close to the previously reported value17

of J ≈ 4.58 meV. In any case, it improves estimates
obtained in Refs. 53 and 54, where the authors found
J/(2π~c) = 33.2 cm−1 and J/(2π~c) = 37.8 cm−1, respec-
tively, i.e. J/kB = 48 K and J/kB = 54 K, both with
errors of the order of 5%.

We emphasize that our procedure of estimating the
anisotropy from two susceptibility measurements with
different field directions is not limited to the special com-
pound CPB. The method works for any close-to-isotropic
model with a small anisotropic perturbation V for which
the thermal expectation value of the perturbation term
can be computed. This is explained in detail in App. A 1.
In App. A 2 we also present a simplified method to esti-
mate the anisotropy as well as the isotropic intrachain
coupling strength which is only based on the ratio of
the temperatures at the maxima of the two susceptibility
curves. In the case of an isotropic system the well-known
exact result of Ref. 37 is reproduced by the novel pro-
cedure. Applying the latter to our data measured on
CPB, we obtained δ ≈ −0.03 and J/kB ≈ 52.2 K, which
is in a good agreement with values resulting from fitting
magnetization data over almost the whole experimen-
tally available temperature range. Thus, we provided
expressions which might prove to be useful for an easy
estimation of J and δ in related systems with anisotropies
being not too large.

Besides measurements of magnetization and ESR prop-
erties at low frequencies we performed a HF-ESR study on
CPB in order to investigate the behavior of the resonance
shift as a function of magnetic field and temperature in
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more detail. At high temperatures, recorded spectra con-
sist of a single resonance line. From frequency dependent
measurements at 300 K we extracted the temperature-
independent gc-factor, gc = 2.153 (see Sec. V B 1), which
is very close to the X-band result gc = 2.154 and which
is typical for Cu2+ ions in an octahedral environment.44

Afterwards, this value for gc was used for calculating the
resonance shift at low temperatures, as it is discussed
below. Moreover, we aimed at extracting an additional
independent value of the anisotropy parameter from these
data. As it turned out, the method of determining the
anisotropy parameter δ from data for the resonance posi-
tion at high temperature as a function of frequency is not
reliable in the case of CPB since its anisotropy is too small
(|δ| ≈ 0.02). However, since the quantity from which δ is
estimated is proportional to δ2, we believe that it provides
better estimates if |δ| is bigger, e.g. |δ| & 0.1. Therefore,
the presented analysis may find further applications to
systems beyond the scope of this work.

In contrast to high temperatures, low temperature HF-
ESR spectra of the undoped sample contain two lines
visible at high frequencies. For the explanation of the
appearance of these two spectral lines we favor a scenario
based on the existence of a (small) intergrown crystal
with slightly different orientation of its c axis. This would
explain the different spectral weights of the two peaks
(with the intensity of the smaller peak proportional to the
volume of the intergrown crystal) as well as the different
positions of the peaks (corresponding to different g-factors
due to different angles between magnetic field and the two
c axes). This scenario is further supported by the fact that
we could not observe any double-peak structure in our
HF-ESR measurements on the doped samples (data not
shown) which in most other respects behave qualitatively
similar to the undoped sample (see Sec. VII). Another
possible scenario, which cannot be fully ruled out, is that
the two lines can be attributed to the two magnetically
inequivalent chains. However, within this scenario we
also would expect two lines of equal intensity which is
in contrast to the experimental findings, rendering this
scenario less likely. As it is not possible to determine the
origin of the two lines definitely, we took into consideration
the resonance positions of both lines as well as the mean
resonance field for our investigation of the low temperature
resonance shifts.

The deviations from a straight line as found in our HF-
ESR measurements at 4 K (see Fig. 7) could be explained
by a low-temperature formula for the resonance shift,
yielding a negative value of the anisotropy as well as an
estimate of its magnitude δ = −0.012. Furthermore, by
comparing formulae stemming from different approaches
we could show that the field theoretical result (26) is in-
sufficient to explain our data for frequencies ~ω/J & 0.1.
This evidences the importance of logarithmic corrections
as in Eq. (27) for describing the resonance shift in mag-
netic fields which do not fulfill the condition h/J � 1 as
it is the case in our study. An even better agreement be-
tween experimentally obtained and calculated shifts was

found, if we take into account finite temperature effects,
cf. Eq. (28), which are visible in our data despite the fact
that measurements were performed for T = 0.08J/kB .

Our temperature-dependent ESR data for the reso-
nance shift (see Fig. 8) agree very well with the theoreti-
cal prediction (28), using the previously obtained values
J/kB = 52.0 K, gc = 2.154, and δ ≈ −0.02 without any
fitting. However, it seems that the data at very low
temperatures (T ≤ 4 K) are better matched by assum-
ing small anisotropies, e.g. |δ| = 0.012, 0.015, instead of
|δ| ≈ 0.02. On the other hand, the overall temperature
dependence, in particular at low and intermediate tem-
peratures, 0.1 ≤ kBT/J ≤ 3, can be well explained by
assuming a larger anisotropy, e.g. |δ| = 0.019 (as obtained
from our susceptibility measurements). This fits with the
fact that our derivation of Eq. (28) in App. B assures its
validity if the the condition δ � kBT/J is satisfied, while
the extension to lower temperatures is based on more
hand-waving arguments.

Furthermore, by combining the information on δ as
well as on the existence of two distinct anisotropy axes
with the information about the propagation vector of the
ordered state, as obtained from neutron scattering exper-
iments, a tentative spin structure at zero temperature
could be proposed (see Fig. 1). Strong theoretical support
for this structure was obtained from a renormalization
group argument (see App. C). Thus, the present study is
an example for combining ESR measurements, neutron
scattering experiments, and theoretical arguments as com-
plementary methods to gain information about the spin
structure of the ordered state of a real physical system.

Considering the anisotropy parameter, we obtained at
least three reliable and independent estimates for δ based
on magnetization and ESR measurements which allowed
us to establish the strength and the sign of the anisotropy
of CPB to be δ ≈ −0.02. The latter finding is an impor-
tant contribution to the evaluation of the utility of CPB
as a realization of the XXZ model. As was mentioned in
Sec. II, the XXZ model belongs to the class of integrable
lattice models. This fact makes it possible to calculate
its thermodynamic properties and some of its correlation
functions exactly for the infinite chain. Unfortunately, an
external magnetic field generally breaks the integrabil-
ity, unless it is applied in the direction of the anisotropy
axis. Our finding that the anisotropy axes of the two
inequivalent chains in CPB are oriented perpendicular to
each other and perpendicular to the chain axes makes it
impossible to apply any of the known exact results for the
XXZ model, except when the external field is switched
off, as any finite field will necessarily be non-parallel to
at least the anisotropy axis of one of the two families of
inequivalent chains. For the applicability of the results
obtained in Ref. 27, for instance, we would have needed
that the anisotropy axes would be oriented along the
chain direction. What may be seen as bad luck with the
orientation of the anisotropy axes was somewhat compen-
sated by our finding that the anisotropy parameter is very
small in modulus. This fact allowed us to perform a first
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order perturbation theory in δ and to use exact results for
the isotropic Heisenberg chain which remains integrable
for arbitrary direction of the applied magnetic field. As
the comparison with the experimental results shows, this
works very well for the susceptibility of the XXZ chain
and for the description of the temperature dependence of
the resonance shift. We have further combined the pertur-
bative expansion in δ with a high-temperature analysis
and with an analysis of the cut-off dependence of modified
moments which gave us access to the angular dependence
of the linewidth in the high-temperature regime. Alto-
gether the challenges provided by the experimental data
have inspired the development of new ideas on the theory
side whose applicability is not restricted to our specific
example but can also be applied to take into account,
for instance, small XYZ anisotropy, small next-to-nearest
neighbor coupling, or the coupling of adjacent chains.

In order to verify the prediction27 of a strong deviation
from the linear dependence of the ESR resonance shift on
the magnetic field in XXZ magnets, not only a material
with a single anisotropy axis would be required, but we
would need a material with smaller J and larger δ. In
such a material we would also have a chance to reliably
calculate cut-off dependent moments numerically which
would give us direct access to the experimentally measured
linewidth at half height.

IX. CONCLUSIONS

A detailed theoretical analysis of the experimental data
presented in this paper has shown that the magnetic
properties of CPB as seen in ESR and magnetization mea-
surements can be well understood within the following
simple picture tightly connected with the crystal structure
of this compound. The copper ions in the crystal form an-
tiferromagnetic spin-1/2 chains with an exchange coupling
of J = 4.48 meV. The local environment of a magnetic
ion consists of four bromine and two nitrogen ligands
which form a stretched octahedron. As a consequence
of the asymmetry of this local environment, the three
eigenvalues of the g-tensor, whose principal axes coincide
with the symmetry axes of the stretched octahedron, are
mutually different, (g1, g2, g3) = (2.065, 2.018, 2.203).

Furthermore, the isotropic exchange interaction is dis-
torted by a small anisotropic component. This compo-
nent is well accounted for by a small Ising interaction
of strength Jδ = −0.09 meV directed perpendicular to
the bromine planes. As there are two types of octahedra
in the material, which map onto each other by a glide
reflection, there are two inequivalent spin chains whose
anisotropy axes are (almost) perpendicular to each other
and perpendicular to the chain direction. As compared
to the intrachain coupling J , the interchain interaction
is weak as can be seen from the small value of the or-
dering temperature TN = 0.72 K, confirmed by neutron
scattering experiments. Applying renormalization group
arguments to the model of two weakly coupled XXZ

chains (see App. C) we suggested a magnetic structure
in the ordered phase (T < TN ) that is consistent with
the propagation vector Q = (0, 0.5, 0.5) obtained from
neutron scattering experiments and consists of antiferro-
magnetically ordered collinear spins oriented along the
chain direction. From the dependence of the linewidth
on doping concentration we found evidence for an effec-
tive decoupling of the anisotropic component Jδ from
the isotropic exchange J as function of doping. Here the
details remained open. Their explanation would require
further theoretical studies.

On the theoretical side of this work, we have developed
an approach to estimate the exchange anisotropy δ from
static magnetization measurements with fields applied
in different directions (see App. A), which is applicable
to spin chain compounds with small anisotropies. Our
analysis of the ESR data relied on a novel approach to
computing ESR parameters from moments of the dynam-
ical susceptibility with an inherent cut-off in frequency
(see App. B). Since this approach connects the angular de-
pendence of the linewidth with the algebraic decay in time
of a certain correlation function of the isotropic Heisen-
berg chain, we were able to determine the corresponding
exponent γ for high temperatures experimentally.

For the future we hope from the experimental side for
the development of more efficient theoretical methods for
the computation of dynamical correlation functions at
finite temperature which would allow us to obtain a better
prediction for the behavior of the experimental linewidth
at all temperatures. Our hope from the theoretical side
is that the search for experimental systems with simpler
geometry (such that an alignment of the magnetic field
along a single anisotropy axis is possible) will be success-
ful. At the same time, spin chain materials with bigger
anisotropy and smaller J (such that higher effective fields
h/J are accessible) are much sought after. These are ex-
pected to show an interesting non-monotonic behavior27

of the resonance shift as a function of the external field.
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Appendix A: Static susceptibility of
close-to-isotropic models

In this section we proposse a new method to obtain
quantitative estimates of anisotropic perturbations of
magnetically isotropic many-body systems by means of
magnetization or susceptibility measurements. For sim-
plicity we will consider magnetization and susceptibility
as scalars. This is motivated by the fact that the magnetic
field direction is often chosen (almost) parallel to one of
the principal axes of the susceptibility tensor. The static
zero-field susceptibility χ(T ) can then be expressed by
the magnetization m(T, h) per lattice site,

χ(T ) = ∂hm(T, h)
∣∣∣
h=0
≈ m(T, h)

h

∣∣∣∣
h small

, (A1)

where the Zeeman energy h = gµBµ0H is proportional
to the strength H of the magnetic field. Note that the
first relation in (A1) implies that Jχ(T ) is dimensionless,
like the magnetization m(T, h) itself. Standard units as
in Eqs. (3) and (5) can be restored in the end. The
second relation in (A1) assumes a linear dependence of
the magnetization on the applied field which is typically
justified in antiferromagnets if the field is not too large.
The magnetization of CPB, discussed in the main body
of the text, for instance, was measured in small residual
fields of about 0.1 T.

The main idea to be worked out below is to measure the
static zero-field susceptibility χ(T ) (or equivalently the
magnetization for small fields) as a function of tempera-
ture for different magnetic field directions. A comparison
of the susceptibility profiles then allows us to gain informa-
tion about the magnetic anisotropy of the perturbation.

1. Perturbation expansion of the magnetization

We consider a Hamiltonian of the form

H = H0 +HZ + λV (A2)

with Zeeman term HZ = −hS · e and SU(2)-symmetric
Hamiltonian H0. The operator V characterizes the
anisotropic perturbation. We assume that both, H0 and
V , have the same typical energy scale J and that λ is a
small dimensionless number. Furthermore, e = ĝH/|ĝH|,
where ĝ is the g-tensor, will denote a unit vector in field di-

rection, S =
∑L
j=1 sj is the total spin, and h = µBµ0|ĝH|

is the Zeeman energy corresponding to the magnetic field
ĝH . Then, the component in field direction of the dimen-
sionless magnetization per lattice site reads

m(T, h, λ) =
kBT

L
∂h ln

[
Tr
{
e−H/(kBT )

}]
. (A3)

A perturbation expansion up to first order in λ yields

m(T, h, λ) ' m(T, h, 0)− λ

L
∂h〈V 〉T,h,0 , (A4)

⇒ χ(T ) ' χ(0)(T )− λ

L
lim
h→0

∂2
h〈V 〉T,h,0 , (A5)

where

χ(0)(T ) = lim
h→0

∂hm(T, h, 0) (A6)

is the zero-field susceptibility of the unperturbed, isotropic
system. The corrections to Eqs. (A4) and (A5) are of or-
der O(λ2) and O(λ2J2/(kBT )2), the latter meaning that
temperatures are restricted to the regime T � λJ/kB.
Thus, if the temperature dependence of the zero-field sus-
ceptibility of the unperturbed isotropic model is known
and if the expectation values 〈V 〉T,h,0 of the perturba-
tion term with respect to the unperturbed Hamiltonian
H0 +HZ can be computed, Eq. (A5) provides a useful
means to determine the anisotropy parameter λ.

Naively one might try to proceed by measuring the
susceptibility of the full system, i.e. the left hand side of
Eq. (A5), and fitting the measured data with the com-
puted right hand side, using λ as a fit parameter. One
problem with such kind of procedure would be that off-
sets and proportionality factors (like geometry factors or
g-factors) of the measured susceptibility χ(T ) are usu-
ally unknown. The energy scale J may be unknown
as well, whereas theoretical predictions of Jχ(0)(T ) and
J∂2

h〈V 〉T,h,0 are typically functions of kBT/J . In the lit-
erature an estimate of J is sometimes obtained by fitting
the susceptibility χ(0)(T ) of the isotropic Hamiltonian to
measured susceptibility data, neglecting effects of small
anisotropies. This value cannot be used. The coupling
J rather has to be extracted, together with offsets, pref-
actors and the anisotropy parameter λ, from the same
fit. But if one uses a single susceptibility curve, the fit
can become unstable since the second term in Eq. (A5)
is small as compared to the first one.

A considerable improvement can be achieved if several
susceptibility curves are recorded with magnetic fields
applied in different directions, say e(i) = ĝH(i)/|ĝH(i)|,
i = 1, 2, . . . , n. For the theoretical analysis we rather
rotate the chain and keep the direction associated to
the Zeeman term HZ fix. A rotation does not af-
fect the isotropic, SU(2)-invariant part H0 of the to-
tal Hamiltonian (A2), but transforms the anisotropic
part V into generally different operators V (i). Plugging
those into Eq. (A5) and denoting first order terms by

χ
(i)
corr(T ) = − λ

L limh→0 ∂
2
h〈V (i)〉T,h,0 this yields

χ(i)(T ) ' χ(0)(T ) + χ(i)
corr(T ) . (A7)

Taking also the possibility of different offsets χ
(i)
0 and

geometry factors A(i) for different directions e(i) into
account we arrive at (i = 1, . . . , n)

χ(i)(T ) = A(i)
(
χ(0)(T ) + χ(i)

corr(T )
)

+ χ
(i)
0 , (A8)

which is the general form of Eqs. (6) of the main text.

Unknown parameters are offsets χ
(i)
0 , geometry factors

A(i), energy scale J and last but not least the anisotropy
parameter λ. They can be determined by a simultaneous
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fit of all Eqs. (A8) with i = 1, . . . , n to the measured data.
An advantage of a combined fit (instead of two individual
fits) is that it stabilizes the algorithm. The two correction
terms in Eqs. (6a) and (6b) are in a way counteractive to
each other.

If one is merely interested in a rough estimate of λ rather
than in all parameters including offsets and geometry
factors of the experimental susceptibility data, and if the
isotropic susceptibility χ(0)(T ) has a maximum at a known

temperature T
(0)
max, one can use a simplified procedure

which requires no fitting and only needs two different
directions of the magnetic field, labeled 1 and 2 in the
following. It further does not require knowledge of the
full temperature dependence of the isotropic susceptibility
χ(0)(T ). If the perturbation parameter λ is small enough

the maximum of χ(0)(T ) at T
(0)
max gets slightly shifted by

χ
(1,2)
corr (T ), resulting in two new maxima at T

(1)
max and T

(2)
max.

The difference of these two temperatures can be computed
as

T (1)
max − T (2)

max ≈ −
∂Tχ

(1)
corr(T )− ∂Tχ(2)

corr(T )

∂2
Tχ

(0)(T )

∣∣∣∣∣
T=T

(0)
max

,

(A9)

where we used expansions of T
(1,2)
max up to first order in λ

and implicit differentiation. Inserting the definitions of

χ
(1,2)
corr (T ) and solving for λ yields

λ ≈ A0
T

(1)
max − T (2)

max

T
(0)
max

(A10)

with

A0 =
T∂2

T∂h〈Sz〉T,h,0
∂T∂2

h

(
〈V (1)〉T,h,0 − 〈V (2)〉T,h,0

) ∣∣∣∣∣h=0
T=T (0)

max

. (A11)

A particular example where A0 and T
(0)
max can be explicitly

calculated is presented below.

2. Example: Spin-1/2 XXZ chain

For a single spin-1/2 XXZ chain, Eq. (1) with aniso-
tropy/perturbation parameter δ = λ, one can measure
the zero-field susceptibility in a magnetic field parallel to
the anisotropy axis (χ(‖)) and perpendicular to it (χ(⊥)).
After a suitable spin rotation, which brings the Zeeman
term to the form −hSz, the corresponding perturbations
become V (‖) = J

∑
j s
z
js
z
j+1 and V (⊥) = J

∑
j s
x
j s
x
j+1.

Their expectation values can be computed exactly by
solving non-linear integral equations which arise in the
context of the quantum transfer matrix approach to the
thermodynamics of integrable models (see comment be-
tween Eqs. (5) and (6) of the main text). Inserting the
expectation values of V (⊥) and V (‖) into Eq. (A11) we
obtain

A0 =
T∂2

T∂h〈sz1〉T,h,0
J∂T∂2

h〈sz1sz2 − sx1sx2〉T,h,0

∣∣∣∣h=0
T=T (0)

max

≈ 2.39 , (A12)

where we used T
(0)
max ≈ 0.64085J/kB .37 Therefore,

λ ≈ 2.39
T

(‖)
max − T (⊥)

max

T
(0)
max

≈ 2.39

(
T

(‖)
max

T
(⊥)
max

− 1

)
. (A13)

Note that in our notation used in the analysis of the
compound CPB (see main body of the text, in particular
Eqs. (3) and (5) in Sec. IV) the labels (‖) and (⊥) mean
parallel and perpendicular to the crystallographic c axis
rather than to the anisotropy axis. Due to the special
arrangement of the anisotropy axes in CPB, the difference
of the two perturbation terms is minus one half of the
difference of the two perturbation terms of the single
anisotropic chain. Hence, the prefactor A0 is twice as big
and negative, A0 ≈ −4.78, and the formula to estimate δ
from the positions of the maxima reads

δ ≈ −4.78

(
T

(‖)
max

T
(⊥)
max

− 1

)
. (A14)

A simple fit of our CPB data around the locations of the

maxima, T ∈ [25 K, 42 K], yields T
(‖)
max ≈ 33.25 K, T

(⊥)
max ≈

33.05 K, T
(‖)
max/T

(⊥)
max ≈ 1.006 and hence δ ≈ −0.03. Note

that “around the locations of the maxima” is ambiguous
and that outliers and asymmetry of the maxima caused
some difficulties. We determined an optimal temperature
range using a polynomial of degree three as fit function.

The value of the isotropic exchange interaction can
as well be estimated from the temperature value at the

maximum T
(‖)
max using the theoretical prediction J/kB ≈

T
(‖)
max/(0.64085+δ/8+δ2/20) ≈ 52.2 K. The δ-corrections

in the denominator are obtained by varying δ, calculat-

ing for each δ the quantity kBT
(‖)
max/J exactly, i.e. to

high numerical precision by solving non-linear integral
equations,23,37 and approximating the resulting curve
around δ = 0 by a polynomial of degree two. For δ = 0
the exact result of Ref. 37 is reproduced.

The values of J and δ obtained by this simplified pro-
cedure are compatible with the values δ = −0.019 and
J/kB = 52.0 K obtained by a fit to the data over almost
the entire temperature range (see Sec. IV), omitting only
very low temperatures, where the perturbation expansion
is not valid, and temperatures above room temperature,
where the susceptibility data are less precise.

Appendix B: Theoretical description of ESR
parameters

In this section we discuss the ESR parameters ‘res-
onance shift’ and ‘linewidth’ and derive some expres-
sions used in the main body of the manuscript. We
consider an interacting spin system in a homogeneous
magnetic field (in z direction) which couples to the total
spin. If the interactions between the spins are purely
isotropic, like e.g. in Eq. (1) with δ = 0, the Hamilto-
nian of the spin system commutes with the total spin,
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and the dynamical susceptibility χ′′+−(ω, h) of Eq. (2)
simplifies to χ′′(ω, h) = πm(T, h) δ(ω − h/~), where
m(T, h) = 〈sz1〉T,h,0 is the magnetization per lattice site.
This means that the absorbed intensity has a single sharp
resonance peak at the paramagnetic resonance frequency
ω = gµBµ0H/~. The total magnetic moment of the spin
system rotates about the magnetic field direction. In a
weakly anisotropic system, e.g. Eq. (1) with δ 6= 0, energy
is transferred from the rotation to internal excitations
which causes a shift and a broadening of the paramagnetic
resonance peak.

We wish to identify appropriate measures for this ‘res-
onance shift’ and ‘linewidth’, that are both, accessible
by theory and extractable from experimental data. In
the introduction of this manuscript we have discussed
different measures of these ESR parameters, in the first
place the maximum position of the peak and its width
at half height. The latter can be easily read off from
measured absorption curves, but are unfortunately so far
inaccessible by theory. A measure which is more conve-
nient for a theoretical description is defined in terms of
moments of the absorption profile I(ω, h)/I0 (‘method of
moments’; see Sec. II). It requires an integration over all
frequencies or fields. This, in turn, is often problematic
with experimental data, since absorption profiles away
from a close vicinity of the location of the maximum of
the peak may be heavily distorted by systematic and
statistical errors like underground, noise, and drift.

A problem with the two different kinds of measures dis-
cussed above is that they may behave quite differently as
functions of temperature and magnetic field and therefore
cannot be compared naively. For instance, if we consider
experimental data of the width at half height as function
of temperature (see Fig. 11) and theoretical predictions
for the linewidth of I(ω, h) based on its moments (see
e.g. Refs. 27 and 28), they show different monotonic be-
havior, and we observe a clear mismatch, in particular
at low temperatures. We have discussed two possible
explanations of this discrepancy in the introduction: dis-
tributions with ‘heavy tails’ and different ‘directions’ used
in theory (‘ω-direction’, i.e. fixed magnetic field) and in
experiments (‘h-direction’, i.e. fixed frequency).

In order to address the first problem we shall suppress
the spectral weight of the frequency tails by considering
the so-called shape function 8I(ω, h)/[ω(1− e−~ω/(kBT ))]
instead of the absorbed intensity. For the XXZ spin
chain with anisotropy axis parallel to the magnetic field
it becomes a function of the difference ~ω − h in the
high-temperature limit.28 Hence, in this limit, the second
problem, the inequivalence of h- and ω-directions, is re-
solved as well. We also believe that ω- and h-directions
remain more or less comparable at infinite temperature
even if the anisotropy axis of the XXZ spin chain is tilted
away from the direction of the magnetic field. Therefore,
at high temperature, using the shape function should
reduce both causes for the mismatch (‘heavy tails’ and
‘different directions’) at the same time.

At lower temperatures the situation is different. Al-

though the spectral weight of the high-frequency tails
of the normalized shape function is suppressed as com-
pared to the weight in the tails of the absorbed inten-
sity I(ω, h)/I0 (by a factor ω(1 − e−~ω/(kBT ))), there
is still a mismatch between experimental data and the
moment-based linewidth of the numerically computed
shape function.28 Our numerical investigations have
shown that the linewidth as obtained from an integra-
tion in h-direction has the same monotonic behavior
as the width at half height (at least for temperatures
T ≥ J/kB), but a quantitative discrepancy remains be-
tween experimental linewidth, measured as width at half
height, and moment-based linewidths calculated by means
of the shape function.

In order to resolve this discrepancy one either has to
find a way to enhance the quality of the experimental data,
rendering computations of moments of the absorption line
possible, or one has to find other theoretical measures
for the ‘resonance position’ and ‘linewidth’ that can be
computed and have a known relationship to the exper-
imentally accessible measures ‘maximum position’ and
‘width at half height’. Below we generalize the moment-
based approach by introducing certain ‘cut-off functions’
which effectively restrict the range of integration in the
definition of the moments to a vicinity of the maximal
absorption and suppress the experimentally inaccessible
high-frequency tails.

At first sight this may look like a simple remedy to the
above described problems. However, on the theoretical
side, a cut-off in general spoils our method to calculate
the moments. Moments are relatively easy to calculate
if the cut-off is sent to infinity and if we consider the
dynamical susceptibility rather than the shape function.
In this case, the moments can be expressed in terms of
certain static short-range correlation functions.27,28 Still,
as we shall point out below, moments of a shape function
restricted by a cut-off can be analyzed, if we take into
account the simplifications coming from a perturbation
theory in small anisotropy parameter δ and from a high-
temperature expansion.

After presenting the precise definition and some prop-
erties of moments in the next subsection, we will focus
on two cases. In the first case we keep the angle between
magnetic field and anisotropy axis constant, ϑ = 90◦, and
exploit only the smallness of the anisotropy. The zeroth
and first moment turn out to be independent of the cut-
off to lowest order in δ. This means that they provide a
measure for the resonance shift for all temperatures that
is compatible with the experimentally determined peak
position. For the second moment we have to resort to a
numerical calculation of certain time-dependent correla-
tion functions. In 3d systems the decay of these functions
is fast (within a time scale of order ~/J) which leads to
Lorentzian-like spectra with linewidths proportional to
δ2(1 + cos2 ϑ). In 1d systems they decay much slower
(usually algebraically as t−γ), leading to possibly differ-
ently shaped spectral lines with a broader but still narrow
central peak.35 It turns out that the small cut-off in fre-
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quency, required for the narrow absorption lines we have
observed in our experiments, would make it necessary to
calculate these time-dependent correlation functions for
long times, which is beyond the scope of our numerical
method.

In the second case we consider the angular dependence
of the moments in the high-temperature regime T � J/kB
and for small anisotropy parameter δ. Then, the two low-
est moments can be calculated explicitly and determine
the angular dependence of the resonance shift. The cut-
off further enables the analysis of the scaling behavior
of the second moment. This scaling behavior, whose
analysis is supported by numerical investigations (see
below), connects the second moment with the experi-
mentally determined width at half height. This way we
derive a new formula for the angular dependence of the
linewidth, Eq. (B23), which is consistent with the picture
of ‘inhibited-exchange narrowing’35 in one dimension.

1. Moments of the shape function

In the following we set kB = µB = ~ = 1. We will re-
store the standard units at the very end by dimensionality
considerations. The function

fαβ(ω, h) =
2

L

∫ ∞
−∞

dt eiωt
〈
Sα(t)Sβ

〉
T,h,δ

(B1)

is called the shape function (of a chain of length L).
The difference to the dynamical susceptibility is just a
multiplicative factor (1 − e−ω/T )/4. This can be seen
by expressing the function fαβ by its Lehmann series,
as shown e.g. in Appendices A.7, 8 of Ref. 28. The
index pair (α, β) takes values (x, x), (+,−), and so on,
depending on the polarization of the incident wave. The
time evolution Sα(t) = eiHtSαe−iHt is governed by the
Zeeman term −hSz of a magnetic field in z direction plus
the Hamiltonian of the XXZ model, where, in general,
the direction of the anisotropy axis is different from the
magnetic field direction. The full Hamiltonian reads

H = Hxxx − hSz + δ · H′(ϑ, ϕ) , (B2a)

Hxxx = J

L∑
j=1

(sxj s
x
j+1 + syj s

y
j+1 + szjs

z
j+1) , (B2b)

H′(ϑ, ϕ) = J

L∑
j=1

[cosϑ szj −
sinϑ

2
(eiϕs+

j + e−iϕs−j )]

× [cosϑ szj+1 −
sinϑ

2
(eiϕs+

j+1 + e−iϕs−j+1)] ,

(B2c)

where ϑ and ϕ are azimuth and polar angles in the ref-
erence frame (x, y, z). Thermal averages in Eq. (B1) are
defined by 〈A〉T,h,δ = Tr{e−H/TA}/Tr{e−H/T }.

Our aim is now to define theoretical measures of the
resonance shift and the linewidth of the central peak
around ω = h of the absorbed intensity I(ω, h), which

can be connected to experimental measures of the ESR
parameters. In the case of small anisotropy δ and not
too small applied frequencies ν = ω/2π of the incident
micro waves we may assume that the width of this peak
is small compared to the resonance field close to h = ω.
This assumption has several important consequences.

1. First of all, it is reasonable to assume that, when in-
vestigating only the central peak (in a proper defini-
tion of ESR parameters), it does not matter whether
we consider the shape function f(ω, h) as function
of frequency ω for fixed field h (‘ω-direction’) or the
other way round (‘h-direction’). In this section we
will focus on the former set-up.

2. Secondly, additional factors like ω/2 (see paragraph
below Eq. (2) of the main text) and (1− e−ω/T )/4,
which connect the shape function fαβ with the in-
tensity I, can be neglected since they are almost
constant over the whole region in which I(ω, h)
is non-negligible. Hence, ESR parameters of the
shape function should be comparable to those of I
(i.e. equal up to leading order), as long as tails of
fαβ are not taken into account in their definition.

3. A third consequence is that for a linearly polarized
incident wave we can neglect all terms in the ex-
pansion fxx = 1

4 (f++ + f+− + f−+ + f−−) except
for f+−. The neglected terms either belong to the
peak around ω = −h and are therefore small for
ω = h (f−+) or are very small for all frequencies
(f±± � f±∓).

4. Last but not least, due to the previous point, the
leading orders of the ESR parameters do not depend
on ϕ. Hence, we may choose any value of ϕ in
Eq. (B2c), e.g. ϕ = 0 for convenience.

In conclusion, we may focus on the peak around ω = h
of the shape function f+−. We omit the index +− and
denote it by

f(ω) =
2

L

∫ ∞
−∞

dt ei(ω−h)t
〈
eihtS+(t)S−

〉
T,h,δ

. (B3)

In order to analyze the corresponding resonance shift
and linewidth we define the shifted moments

mn(Ω) =

∫ ∞
−∞

dω

2π
µΩ(ω − h)(ω − h)nf(ω) . (B4)

This definition differs from the one of Refs. 27 and 28
in that we have inserted a cut-off function µΩ under
the integral. As discussed in the introduction of this
section, this function is supposed to suppress the high-
frequency tails of the shape function that are invisible in
the experiments. We imagine µΩ as a symmetric function
which falls off rapidly for large arguments and depends
on a cut-off Ω. To keep notations simple, we drop in
the following the cut-off dependence of µΩ and mn(Ω).
We consider µ together with its Fourier transform µ̂(t) =



22∫∞
−∞

dω
2π µ(ω)eiωt. The precise form of these functions

does not matter for our arguments below. Examples are

µ(ω) = χ[−Ω,Ω](ω) , µ̂(t) =
sin(Ωt)

πt
, (B5a)

µ(ω) =
sin(ω/Ω)

ω/Ω
, µ̂(t) =

Ω

2
χ[− 1

Ω ,
1
Ω ](t) , (B5b)

µ(ω) = e−
ω2

2Ω2 , µ̂(t) =
Ω√
2π
e−

t2Ω2

2 . (B5c)

Here, χI is the characteristic function of the interval I.
In general, we require that the cut-off function depends
on a cut-off Ω in such a way that limΩ→∞ µ(ω) = 1.

Using the Fourier transform µ̂(t), the moments can be
expressed as

mn =

∫ ∞
−∞

dt µ̂(t)(i∂t)
nf̂(t) , (B6)

where f̂(t) = 2
L

〈
eihtSα(t)Sβ

〉
T,h,δ

. For the lowest mo-

ments we thus obtain the following explicit expressions,

m0 =
2

L

∫ ∞
−∞

dt µ̂(t)
〈
eihtS+(t)S−

〉
T,h,δ

, (B7)

m1 =
2δ

L

∫ ∞
−∞

dt µ̂(t)
〈
eiht[S+,H′](t)S−

〉
T,h,δ

, (B8)

m2 =
2δ2

L

∫ ∞
−∞

dt µ̂(t)
〈
eiht[S+,H′](t)[H′, S−]

〉
T,h,δ

.

(B9)

The shape function is real and positive. If we divide

by the zeroth moment with infinite cut-off, m
(∞)
0 =

limΩ→∞mn(Ω), its integral over all frequencies is nor-

malized to one. We may therefore interpret f(ω)/m
(∞)
0

as a distribution function. If this function has a single
symmetric peak, then the position of its maximum agrees
with the average frequency 〈ω〉, and the first moment
becomes a measure for the resonance shift,

s = 〈ω − h〉 = m
(∞)
1 /m

(∞)
0 . (B10)

Similarly, the variance

∆ω =

√
m

(∞)
2 /m

(∞)
0 − s2 (B11)

may be considered as a measure for the width of the
peak. Such an interpretation of the variance is common
within the context of Heisenberg’s uncertainty relation.
Still, if the distribution function is not just a Gaussian,
the variance and the more intuitive width at half height
may assume rather different values. For this reason we
cannot directly compare the width calculated by means
of Eq. (B11) with linewidths as usually obtained in ESR
experiments. The only remaining question is if we can
determine the moments mn(Ω) theoretically for small
cut-off Ω, which we address in the following subsections.

2. Small anisotropy

The expressions for the moments simplify considerably
if we expand them for small δ around the isotropic point,

m0 '
2

L

〈
S+S−

〉
T,h,0

+O(δ) , (B12a)

m1 '
2δ

L

〈
[S+,H′]S−

〉
T,h,δ

+O(δ3)

+
2δ2J

iL

∫ ∞
−∞

dt µ̂(t)

∫ t

0

dt1 e
iht1

〈
[S+,H′](t1)[H′, S−]

〉(0)

T,h,0
, (B12b)

m2 '
2δ2

L

∫ ∞
−∞

dt µ̂(t)eiht
〈
[S+,H′](t)[H′, S−]

〉(0)

T,h,0

+O(δ3) . (B12c)

Here the superscript (0) indicates that the time evolution
is generated by H0 = Hxxx − hSz. As in case of the
anisotropic corrections to the susceptibilities our deriva-
tion guarantees the validity of the above formulae for
temperatures T � δJ .

The most striking feature of the moments m0 and m1

in (B12a) and (B12b) is that, to lowest order in δ, they
do not depend on the cut-off. Hence, we may assume
that the cut-off is small. Since our measured resonance
peaks for CPB are moreover rather symmetric, the shift
of the position of the maximum should be well described
by Eq. (B10) for all temperatures T � δJ . Since the
resonance shift is robust against changes of the high-
frequency tails that are symmetric with respect to ω − h
we expect that the validity of Eq. (B10) extends down
to low temperature. For the second moment, on the
other hand, the cut-off dependence remains. Inserting the
Hamiltonian (B2) into Eqs. (B12), the leading orders in
δ read

m0 =
4 〈sz1〉T,h,0
1− e−h/T , (B13a)

m1 = (3 cos2 ϑ− 1)
4Jδ 〈sx1sx2 − sz1sz2〉T,h,0

1− e−h/T , (B13b)

m2 '
2δ2

L

∫ ∞
−∞

dt µ̂(t)eiht
〈
[[S+,H′](t)[H′, S−]]

〉(0)

T,h,0
.

(B13c)

For the comparison with our experimental data we have
to recall that we recorded the temperature dependence of
the ESR parameters for an external field along the c axis,
i.e. perpendicular to the anisotropy axes of both of the
inequivalent chains in our CPB sample. This situation
corresponds to ϑ = 90◦ and ϕ = 0 in Eq. (B2c) for both
chains, which equally contribute to the resonance. With
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this choice of the angles, Eqs. (B12a)–(B12c) turn into

m0 =
4 〈sz1〉T,h,0
1− e−h/T , (B14a)

m1 =
4Jδ 〈sz1sz2 − sx1sx2〉T,h,0

1− e−h/T , (B14b)

m2 '
δ2

8L

∫ ∞
−∞

dt µ̂(t)gT (t) (B14c)

with

gT (t) =

4

L∑
j,k=1

〈
[(szjs

+
j+1 + s+

j s
z
j+1)(t)(szks

−
k+1 + s−k s

z
k+1)]

〉(0)

T,h,0

+ (h↔ −h) . (B15)

We use Eq. (B10) with (B14a) and (B14b) in Secs. V B 2
and V C in order to determine the field- and temperature-
dependence of the resonance shift. As for the width we
computed the correlation function in Eq. (B15) numeri-
cally and tried to compare the second moment obtained
from the experimental data with the theoretical value
predicted by Eq. (B14c). It turned out that the frequency
cut-off required by the experimental data is too small for
our numerically available resolution.

3. Small anisotropy, high temperature and low
frequency

Further simplifications occur at high temperature. We
consider the first three moments, Eqs. (B13). For temper-
atures T � J we can expand thermal averages 〈A〉T,h,δ
in the small parameter J/T . This way we obtain entirely
explicit and cut-off independent expressions for the zeroth
and first moments (neglecting subleading orders in J/T ),

m0 ' 1 , (B16a)

m1 '
Jδ

4T

(
(1− 3 cos2 ϑ)h+

Jδ

2
(1 + cos2 ϑ)

)
. (B16b)

On the other hand, the high-temperature expression for
the second moment,

m2 '
J2δ2

4

∫ ∞
−∞

dt µ̂Ω(t)g∞(t)

[
(1− 3 cos2 ϑ)2

2

+ 5 sin2 ϑ cos2 ϑ cos(ht) +
sin4 ϑ

2
cos(2ht)

]
, (B16c)

remains cut-off dependent and contains the infinite-
temperature dynamical correlation function

g∞(t) =
4

L

L∑
j,k=1

〈
eiHxxxts+

j s
+
j+1e

−iHxxxts−k s
−
k+1

〉
∞ ,

(B17)

where 〈·〉∞ = limT→∞〈·〉T,h,δ = Tr(·)/2L.
We use Eqs. (B16a) and (B16b) together with Eq. (B10)

in order to analyze the angular dependence of the reso-
nance shift in the high-temperature regime (see Eqs. (10),
(11), and (23) in Secs. V A and V B 1).

The angular dependence of the linewidth at high tem-
peratures, Eq. (12) in Sec. V A, has been inferred from
the scaling behavior of the second moment that can be
calculated from (B16c) under certain assumptions about
the size of the cut-off and the asymptotics of the func-
tion g∞. The scaling behavior connects the width at half
height with the second moment. The argument proceeds
as follows. The ESR absorption line of our experiments
consists of a single peak located at around h = ω with
a width at half height of 2η. It is reasonable to assume
that a rescaling of the width η → aη, a > 0, amounts to
a rescaling of the shape function

f(ω + h) → 1

a
f

(
ω + h

a

)
. (B18)

This is true, for instance, if the ESR absorption line
around the location of its maximum is shaped like a
Lorentzian f(ω) = 2η/(η2 + (ω − h)2).

Under this scaling transformation the second moment
(B4) transforms like

m2(Ω)→ a2m2(Ω/a) . (B19)

If now m2 is a homogeneous function of degree γ,
then m2(Ω) → a2−γm2(Ω). It follows that the ratio[
m2(Ω)

] 1
2−γ /η is scale invariant and thus

η ∝
[
m2(Ω)

] 1
2−γ , (B20)

which relates the width at half height with the second
moment.

Let us now argue that the second moment is indeed a
homogeneous function of the cut-off if we restrict ourselves
to an appropriate parameter regime. We hypothesize that
the function g∞ in (B17) behaves for large times, t� 1/J ,
as

g∞(t) ' α(Jt)−γ , (B21)

where α is of order one and 0 < γ ≤ 1. We can support
this claim by numerical calculations for finite system sizes
up to L = 32, as shown in Fig. 12. A fit of a straight line
to the double logarithmic data in the asymptotic time
regime 8 ≤ Jt ≤ 16 provides γ = 0.6 and α = 0.272
(see inset of Fig. 12). In the main body of the text we
refer to this value as γ∞, to indicate that this is the
value of γ at infinite temperature. This value is not in
contradiction to the value γ = 0.70 reported at the end
of Sec. V A, since this is the measured value at large but
finite temperature (T/J ≈ 6 <∞). We performed further
numerical calculations at finite temperatures (down to
T/J = 1) which are in accordance with these findings.

In order to evaluate the time integral in Eq. (B16c) we
choose the cut-off function Eq. (B5b) for our convenience.
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FIG. 12. Dynamical correlation function g∞ as function of
time Jt for lattice sites L = 16, 24, and 32 (dotted, dashed, and
solid black lines) together with an exact short time expansion
(STE) of the infinite chain up to t40 (red line). Inset: data for
L = 32 in a double logarithmic plot (black circles) together
with an asymptotic fit (red line) of g∞(t) = α(Jt)−γ with
γ = 0.6 and α = 0.272.

The integral in Eq. (B16c) is then restricted to the interval
[−1/Ω, 1/Ω]. The cut-off Ω should not be too small in
order to cover the whole central peak, say Ω & h. Such
a choice of Ω is possible if h � J , which holds true for
our measurements on CPB. We can therefore neglect all
oscillations and approximate cos(ht) ≈ cos(2ht) ≈ 1 in
Eq. (B16c). We eventually obtain

m2(Ω) ≈ J2δ2(1 + cos2 ϑ)

4

2α

1− γ

(
Ω

J

)γ
(B22)

for the cut-off dependence of the second moment.
Then, Eq. (B20) implies that

η ∝ J

[
δ2

4

(
1 + cos2 ϑ

)] 1
2−γ

, (B23)

where δ is the small anisotropy parameter of the Hamil-
tonian (B2) and ϑ the angle between magnetic field and
anisotropy axis. Restoring standard units and assuming
that the proportionality factor does not depend on ϑ or
δ, Eq. (B23) turns into Eq. (12) of the main text.

Appendix C: Spin configuration at zero temperature

In this section we present arguments on why the spin
structure of the zero-temperature ordered ground state in
CPB is as indicated by the arrows in Fig. 1, in particular
why an alignment of the assigned magnetic moments along
the direction of the chains is preferred. The reasoning is

based on scaling arguments similar to those of Ref. 55.
We interpret the interchain coupling as a small pertur-
bation and determine the relevance of the corresponding
operators in the sense of renormalization group theory.
To this end, we shall calculate the large distance behavior
of the correlation function of the interchain operators and
compare scaling dimensions of the different terms with
the marginal value of 2, the latter being characteristic for
the underlying 1+1 dimensional conformal field theory.

We consider two anisotropic spin-1/2 Heisenberg chains
of type (1) with small anisotropy parameter δ < 0 and
with anisotropy axes perpendicular to the chain direction
as well as perpendicular to each other. Furthermore, the
two chains are parallel and shifted against each other
by half of the lattice constant (zig-zag ladder). This
configuration is closely linked to the structure of the
compound CPB (see the main body of the text). We
assume a small isotropic (antiferromagnetic) interchain
interaction, J ′ � J , whose Hamiltonian reads

Hint = J ′
∑
j

hj , hj = s
(1)
j · s

(2)
j + s

(1)
j · s

(2)
j+1 , (C1)

where the superscripts (1) and (2) distinguish the two
chains. Note that for classical systems the geometrical
frustration results in the vanishing of the interchain cou-
pling for antiferromagnetically ordered chains. This is
not the case for quantum chains. Still, the frustration
renders the interchain coupling being a perturbation close
to marginal.

Since δ is negative each single chain is in the antiferro-
magnetic gapless phase. We parameterize the anisotropy
as δ = cos γ − 1. For small values of |δ|, the inverse rela-

tion γ = arccos(1+δ) can be approximated by γ ≈
√

2|δ|.
The CPB value δ ≈ −0.02, for instance, yields γ ≈ 0.2.
From conformal field theory it is known that large dis-
tance correlation functions of the XXZ Heisenberg chain
at zero temperature decay as8,9

〈sα1 sαr+1〉 ∼
(−1)r

r2x±
, α = x, y, z . (C2)

The exponent is 2x+ = (1−γ/π)−1 if α coincides with the
direction of the anisotropy axis, and it is 2x− = 1− γ/π
if the α direction is perpendicular to it.56 The quantities
x± are called scaling dimensions of spin-spin correlation
functions. Since γ/π is small, e.g. γ/π ≈ 0.06 for CPB, we
can expand the first exponent as 2x+ = 1 + γ/π + γ2/π2.
Therefore, we have x+ + x− = 1 + γ2/(2π2).

Let us fix the direction of the two chains to z and the
directions of their anisotropy axes to x and y, respec-
tively. After a straightforward calculation we obtain for
the correlation function of the interchain operator hj in
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the ground state of decoupled chains

〈h1hr+1〉 =
∑
α,β

〈sα1 (1)(sα1
(2) + sα2

(2))sβr+1

(1)
(sβr+1

(2)
+ sβr+2

(2)
)〉

=
∑

α=x,y,z

〈sα1 sαr+1〉(1)〈(sα1 + sα2 )(sαr+1 + sαr+2)〉(2)

∼ 4(x2
+ + x2

−) + 2(x+ + x−)

r2(x++x−+1)
+

4x2
− + 2x−

r2(2x−+1)
.

(C3)

Here, the superscripts (1) and (2) again refer to spin
operators acting on the first or on the second spin chain,
respectively. The first term of the last line stems from
the α = x, y contributions, where the spin direction is
parallel to one of the anisotropy axes and perpendicular

to the other one. The second term is the α = z contri-
bution, where the spin direction is perpendicular to both
anisotropy axes at the same time. We infer that the scaling
dimension of the perturbation terms with spin direction α

perpendicular to the chain is x+ + x− + 1 = 2 + γ2

2π2 > 2,
whereas it is 2x− + 1 = 2− γ/π < 2 for the perturbation
with spin direction along the chain. The marginal scal-
ing dimension is 2. Therefore, the sz-sz term (and only
this one) represents a relevant perturbation of the critical
system.

For just two weakly coupled chains this relevant pertur-
bation would result in dimer order. In case of infinitely
many chains (as in the compound CPB), however, we like
to argue that true long-ranged antiferromagnetic order in
the sz components of the local spins sets in, which can
be interpreted as ‘collinear spins’.
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